
Supplementary Material

S1. Different Domain Generalization Setup

The problem of adapting a Deep Neural Network (DNN)
to tackle real life data corruption at the edge can be for-
mulated by different kind of Domain Generalization (DG)
settings based on the nature of data stream and learning
paradigm. Fig. S1 summarizes the four main DG ap-
proaches in literature, namely Fine Tuning (FT), Unsu-
pervised Domain Adaptation (UDA), Source-Free Domain
Adaptation (SFDA) and Test Time Adaptation (TTA).

Fine Tuning (FT) adapts a DNN by making it match la-
beled test data [1, 5]. FT approaches includes Few-Shots
Learning (FSL), among others [7]. The downside of FT is
that it requires labeled test data and is performed offline,
thus they are hardly applicable in a mobile edge computing
context. Moreover, it does not take into account samples
from the previous domain, so it incurs in catastrophic for-
getting [2].

Unsupervised Domain Adaptation (UDA). This approach
addresses the issues of FT considering samples from the
previous domain and thereby eliminating the need of la-
bels from the new domain [10]. However, as FT, UDA as-
sumes that we can simultaneously access (unlabeled) sam-
ples from the current domain and from the prior domain,
which is not always the case. In stark opposition, our goal
is achieve real-time adaptation of a DNN in dynamic and
uncertain scenarios.
Source-Free Domain Adaptation (SFDA). Conversely
from UDA, in SFDA the DNN adaptation is performed us-
ing unlabeled data from the target domain only [3, 4]. While
SFDA approaches take into account numerous losses for
several epochs during optimization, the key downside is that
it can hardly be applied in real-time learning settings.

Test Time Adaptation (TTA). A practical approach to ad-
dress distributional shifts in real-time settings is TTA, which
utilizes only unlabeled test data (online) to adapt the DNN.
While existing TTA approaches improve performance, they
are sensitive to the diversity of samples in incoming dis-
tributions. For example, even in cases of minor changes
in brightness, approaches adapting the normalization layer
based on entropy minimization such as [6, 8] can experi-
ence a significant decrease in accuracy, dropping to less
than 19% of accuracy on CIFAR-10. Moreover, existing

Current
DNN

Adapted
DNN

Loss Function

yt

ŷt

✳

★

Current
DNN

Adapted
DNN

Loss Function

xpxt

yp

ŷpŷt

✳

★

Current
DNN

Adapted
DNN

Loss Function

xt

(sequential)

ŷt

Fine Tuning (FT) Unsupervised DA (UDA)

Test Time Adaptation (TTA)

Current
DNN

Adapted
DNN

Loss Function

xt

ŷt

Source-Free DA (SFDA)

xt

Figure S1. Domain Generalization (DG) approaches. (xt, yt) indi-
cate the current test sample and its true label, while (xp, yp) indi-
cate source sample and its true label. ŷt indicates the correspond-
ing predictions by the current DNN. We point out that DARDA is a
TTA approach.

methods are not aware of domain changes, so they continu-
ously update the DNN even in the presence of no domain
change. Notice that decoupling the corruption from the
features relevant for classification is extremely challenging.
Such continuous adaptation leads to the risk of catastrophic
forgetting. While state of the art work [9] uses stochastic
restoration of parameters to the initial domain to tackle the
issue, it needs 78.37% more storage for ResNet56 architec-
ture than our proposed approach.

S2. Distribution and Label Shift

Different corruptions lead mainly to a distribution shift
in the input data, which is also widely known as a covariate
shift. Distribution shift happens when the distribution of in-
put data changes while the distribution of true labels remain
unchanged. In a real-life adaptation of DNNs at inference
time, we usually have a batch of samples to work with that
have both distribution and label shift (due to correlation in
labels in certain scenarios) at the same time. Fig. S2 illus-
trates this scenario with an example. This setting is chal-

1

Corruption Shift

La
be

l S
hi

ft

Downtown (Normal)

Suburb (Normal) Suburb (Foggy)

Downtown (Foggy)

Figure S2. Example of Label Distribution & Corruption Shift.

lenging for most existing TTA algorithms, but is more prac-
tical.

S3. Hyperparameters and Implementation De-
tails.

We implement DARDA with the PyTorch framework.
For generating non independent and identically distributed
(IID) real time data flow, we adopted Dirichlet distribution
(with parameter δ) to create a non-IID data flow. Further-
more, to simulate a domain change due to corruption, we
feed samples from different test corruption types sequen-
tially one after another following Dirichlet distribution with
control parameter δ, when all samples from the current test
corruption are exhausted. With lower values of the Dirich-
let parameter δ, there is less diversity among online data
batches, thus less correlation. The noise extractor is de-
signed in a lightweight manner with three convolution layer
with Leaky-ReLU non-linearity stacked sequentially. For
the noise encoder, we use a sequential model consisting
of two convolution units each consisting of a single con-
volution layer with ReLU non-linearity and a MaxPooling
layer. The sequential model is followed by two dense lay-
ers. The sub-network encoder consists of two dense lay-
ers with ReLU non-linearity. For the reported results, we
choose the output dimension of the sub-network encoder
and the corruption encoder, i.e. the dimension of latent
space to be 128 and the batch size is kept at 64, while the
size of the memory bank is kept the same as batch size.

For CIFAR-100 corrupted dataset, we cannot insert sam-
ples from all classes in the memory bank. The parameter
value δ = 0.1 is considered across all test scenarios unless
otherwise specified. However, we have found empirically
that presence of representative samples from the majority of
the classes is sufficient. We use Adam optimizer with learn-
ing rate 1× 103 to perform the adaptation. To generate the
sub-network signature, we first train a ResNet-56 backbone
on the uncorrupted training dataset (CIFAR-10 and CIFAR-

100) and fine-tune the sub-networks for 20 epochs using
data from 15 train corruption domain to create the 15 sub-
networks and their related signatures. For the hyper param-
eters, we assume a fixed set of values throughout the exper-
iments, which are λr = 0.2, λe = 10, φthresh = 0.005
and momentum value m = 0.5. As we make one step up-
grade of the current Batch Normalization (BN) layer statis-
tics by making sure that the samples of the memory banks
are reliable, we chose a rather aggressive momentum value
to weigh the normalization of current test samples highly.

S4. Power Measurement Setup
As both Raspberry Pi and Jetson Nano do not have a

system integrated in them to measure power at a certain in-
stance, we use the setup of Fig. S3 to calculate the energy
consumption of different adaptation methods. The ina219
IC can provide accurate power consumption for a device at
a certain time. We initially take some samples of power
measurement to estimate the idle power usage of the de-
vice. Then for the whole adaptation period of each algo-
rithm, we take samples of power drawn by the device every
10ms. Multiplying with the sampling time and averaging
over batches of data we get a very good estimate of the en-
ergy consumption of different adaptation algorithms.

Raspberry Pi

INA219

USB-C Breakout

I2C Interface

Figure S3. Power Measurement Setup.

S5. Performance of Corruption Extractor
As discussed previously, in a corrupted data sample the

corruption related features are intertwined with label infor-
mation which impedes extraction of contextual information
from data.

To verify whether the corruption extractor is effective in
extracting corruption information from data, we trained our
corruption extractor and encoder using data available from
15 different corruptions and evaluate how it performs for
unknown corruption and different severity. Fig. S4 shows
the t-distributed stochastic neighbor embedding (t-SNE) of
the projections in the latent space of data from different cor-
ruption domains and different levels of severity.

Algorithm 1: Memory Bank Construction
Input: A test sample xt; and associated corruption
embedding Ct; current corruption projection Ccurr

Define: memory bank M; total capacity N ;
class distribution n[y], where y ∈ Y ; total occupancy Oc
Calculate ŷ = arg maxy f

′

θ(y | xt)

if n[ŷ] < ⌈ N
|Y |⌉ andOc <| N | then

Add (xt, Ct) to M
else

Calculate cosine similarity fsim of corruption
projection among instances in {n[ŷ] ∪ xt} and Ccurr

Find instance (x̃, C̃) in n[ŷ] with the lowest similarity
arg minx∈n[ŷ] fsim(x,Ccurr) to current signature

end if
if fsim(x̃) > fsim(xt) then

Discard (xt, Ct)
else

Remove instance (x̃, C̃) from M
Add (xt, Ct) to M

end if

In Fig. S4a and Fig. S4c, the corruption projections are
made directly using the input data. Here, we can ob-
serve that directly encoding the corrupted data does not
produce clusters with tight boundaries. Interestingly,
Fig. S4b and Fig. S4d point out that projecting the corrup-
tion signature extracted from the corrupted data does pro-
duce significantly better clusters. Moreover, although sam-
ples from the “spatter” and “saturate” have an overlapping
boundary in latent space, from Tab. 1 we can see that al-
though they are visually dissimilar, a subnetwork that
performs well for the “spatter” also works well for “sat-
urate”. This means that DARDA is effective not only in cat-
egorizing and mapping corruptions, but also in designing
appropriate subnetworks. Moreover, Fig. S4d shows that
the corruption extractor produces an even better cluster with
higher severity data from unknown corruption domain even
if it was trained on a lower corruption severity. This proves
the intuition that the corruption extractor extracts corrup-
tion information rather than simply over-fitting to the joint
distribution of data and corruption.

S6. Memory Bank Construction Process

The memory bank construction process is described in
detail in Algorithm 1.

S7. More Details of Corruption Encoder

The processes involved both in the training and infer-
ence phase of the proposed Corruption Encoder is illus-
trated through Algorithm 2.

Algorithm 2: Corruption Encoder

Input: dataset Dd; epochs E; batch size N ; constant τ
and λe; embed dimension o; pair downsampler G(.) ;
transformation set T ; structure of g(.) and h(.)
Output: projection vector into corruption latent space
{training}
for epoch = 1 to E do

sample
{
xi, D

i
}N

i=1

sample two augmentations T a, T b ∼ T
generate two down sampled data
G1(xi), G2(xi) = G(xi)
calculate G̃1(xi), G̃2(xi) using Eq. (3)
calculate Ln using Eq. (5)
generate xa

i , xb
i = T a(xi),T b(xi)

generate G1(x
a
i), G2(x

a
i) = G(xa

i) and
G1(x

b
i), G2(x

b
i) = G(xb

i)
extract xi’s corruption xresi , by concatenating
xresi = g((G1(xi)) || g(G2(xi))
calculate the latent space projections Ci by
Ci = h(xresi)
calculate LD using Eq. (6)
calculate overall loss using Eq. (8)
update g(.) and h(.) to minimize L

end for{test}
for x in Du do

generate G1(x), G2(x) = G(x)
calculate and concatenate corruption features
xres = g(G1(x))||g(G2(x))
calculate projection into latent space by
C = h(xres)

end for

S7.1. Theoretical Analysis of the Corruption En-
coder

We offer insights into the information learned by the cor-
ruption encoding process through a theoretical analysis of
the corruption encoder for additive noise.

Proposition 1. Let, two noisy observation from original
sample x be y1 = G1(x) and y2 = G2(x). Assuming
zero mean and independent additive noise; y1 = x + e1
and y1 = x + e1 ; where noise is denoted by ei. If ei can
be approximated by g(.) : ei = gϕ(yi) by minimizing MSE
loss between clean observation xi and noisy observation yi,
minimizing the loss between two noisy observation approx-
imate the same thing.

True Corruption Class Spatter Gaussian Blur Speckle Noise Saturate

Data Sample

JPEG Compression 84% 64.3% 78.1% 84.8%
Glass Blur 72.5% 79.4% 56% 74%
Shot Noise 78% 39.4% 83.8% 75.8%
Brightness 83.7% 52.8% 66.7% 85.6%

Table 1. Performance (accuracy on CIFAR-10) comparison of the sub-network signature closest to the unknown corruption signatures in
the latent space. The left most column indicates the corresponding sub-network signatures. The unknown corruption domain and its closest
sub-network signatures from latent space are: Spatter → JPEG Compression, Gaussian Blur → Glass Blur, Speckle Noise → Shot Noise,
Saturate → Brightness.

t-SNE Dimension 1

t-S
NE

 D
im

en
sio

n
2

(a) Projection of Corrupted Data
(Low Severity)

t-SNE Dimension 1

t-
SN

E
 D

im
en

si
on

 2

(b) Projection of Extracted Cor-
ruption (Low Severity)

t-SNE Dimension 1

t-S
NE

 D
im

en
sio

n
2

(c) Projection of Corrupted Data
(High Severity)

t-SNE Dimension 1

t-
SN

E
 D

im
en

si
on

 2

(d) Projection of Extracted Cor-
ruption (High Severity)

Figure S4. t-distributed stochastic neighbor embedding (t-SNE) of different samples in latent space for CIFAR-10. Here the green, orange,
blue, and red colors indicate Gaussian blur, speckle noise, and saturate; respectively.

Proof.
g(y1, x;ϕ) = argmin

ϕ
E
[
∥y1 − gϕ(y1)− x∥22

]
= argmin

ϕ
E
[
∥gϕ(y1)∥22 − 2yT1 gϕ(y1) + 2xT gϕ(y1)

]
g(y1, y2;ϕ) = argmin

ϕ
E
[
∥y1 − gϕ(y1)− y2∥22

]
= argmin

ϕ
E
[
∥y1 − gϕ(y1)− x− e2∥22

]
= argmin

ϕ
E[∥gϕ(y1)∥22 − 2yT1 gϕ(y1) + 2xT gϕ(y1)

+ 2eT2 gϕ(y1)]

= argmin
ϕ

E
[
∥gϕ(y1)∥22 − 2yT1 gϕ(y1) + 2xT gϕ(y1)

]
= g(y1, x;ϕ)

Assuming zero mean E(ei) = 0 and independent noise the
second to last equality is satisfied

References
[1] Yunhe Gao, Xingjian Shi, Yi Zhu, Hao Wang, Zhiqiang

Tang, Xiong Zhou, Mu Li, and Dimitris N Metaxas. Visual

Prompt Tuning for Test-Time Domain Adaptation. arXiv
preprint arXiv:2210.04831, 2022. 1

[2] Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj
Acharya, and Christopher Kanan. Remind Your Neural Net-
work to Prevent Catastrophic Forgetting. In Proceedings of
European Conference on Computer Vision (ECCV), pages
466–483. Springer, 2020. 1

[3] Vinod K Kurmi, Venkatesh K Subramanian, and Vinay P
Namboodiri. Domain impression: A source data free do-
main adaptation method. In Proceedings of the IEEE/CVF
winter conference on applications of computer vision, pages
615–625, 2021. 1

[4] Rui Li, Qianfen Jiao, Wenming Cao, Hau-San Wong, and
Si Wu. Model adaptation: Unsupervised domain adaptation
without source data. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
9641–9650, 2020. 1

[5] Zhiqiu Lin, Samuel Yu, Zhiyi Kuang, Deepak Pathak, and
Deva Ramanan. Multimodality Helps Unimodality: Cross-
Modal Few-Shot Learning with Multimodal Models. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 19325–19337, 2023.
1

[6] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen,
Shijian Zheng, Peilin Zhao, and Mingkui Tan. Efficient

test-time model adaptation without forgetting. In Interna-
tional conference on machine learning, pages 16888–16905.
PMLR, 2022. 1

[7] Feng Tian, Yue Yu, Xu Yuan, Bin Lyu, and Guan Gui. Pre-
dicted Decoupling for Coexistence Between WiFi and LTE
in Unlicensed Band. IEEE Transactions on Vehicular Tech-
nology, 69(4):4130–4141, 2020. 1

[8] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully test-time adaptation
by entropy minimization. arXiv preprint arXiv:2006.10726,
2020. 1

[9] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai.
Continual test-time domain adaptation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 7201–7211, 2022. 1

[10] Garrett Wilson and Diane J Cook. A survey of unsupervised
deep domain adaptation. ACM Transactions on Intelligent
Systems and Technology (TIST), 11(5):1–46, 2020. 1

