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This document contains the supplementary material for

the paper When Cars meet Drones: Hyperbolic Feder-

ated Learning for Source-Free Domain Adaptation in Ad-

verse Weather. We begin by presenting the implemen-

tation specifics of our network. Next, we introduce ad-

ditional details on the employed datasets. We then pro-

ceed with ablations supporting the usage of the weather

batch-normalization and hyperbolic prototypes. Finally, we

show further experimental data including per-class accuracy

scores and qualitative results.

1. Implementation Details

Server pretraining. We chose DeepLabV3 architecture

with MobileNetV2 as in [12]. We trained our model on

the source synthetic dataset using a decreasing power-law

learning rate η, starting at η = 5 × 10−3 with a power of

0.9. The optimization used SGD with momentum 0.9 and

no weight decay, lasting for 5 epochs with batch size 16.

For the weather classifier, we implemented a 3-layer Con-

vNet (see Fig. 3), trained for 8 epochs using SGD optimiza-

tion with a learning rate of 1× 10−4 and a batch size of 88.

Clients Adaptation. For the target dataset, experiments

were run with a fixed learning rate of η = 1 × 10−4 with

SGD optimizer. The training involved 5 clients per round

for a total of R = 100 rounds, with λcl = 140. The

pseudo-label teacher model was updated at the end of each

round. For the optimizer of the manifolds, we use Riemma-

nianAdam as in [14] with γ = 0.1 as initialization, learning

rate equal to 1× 10−3 and weight decay of 4× 10−4.

Training of Competitors To establish performance up-

per bounds, we conducted two experiments:

1. Fully Centralized Training: We performed supervised

training on the target dataset for 250 epochs with a

learning rate of 5× 10−3.

2. Federated Fine-Tuning: We implemented federated

fine-tuning with full supervision on the clients for 250

rounds, representing an upper limit scenario for the

federated model.

2. Data Selection and Distribution

In standard autonomous driving for semantic segmenta-

tion, a sufficient number of datasets provide a diversity of

adverse weather conditions. For our study on car agents,

we relied on existing datasets, adapting them to enable dis-

tributed learning in adverse weather scenarios. Here, we

will first describe the technical choices adopted for this pur-

pose. Conversely, there is a scarcity of datasets featuring ad-

verse conditions for aerial viewpoints. To address this gap,

we introduced the FLYAWARE aerial dataset, as it repre-

sents a novel contribution to unlock further research on this

topic. Lastly, we provide additional details on weather dis-

tribution among clients.

2.1. Driving Datasets

For the synthetic source dataset for cars, we used the

SELMA dataset [13]. It offers a comprehensive set of 27

weather and daytime conditions, resulting in a vast dataset

of over 20M samples. To better align with the weather sce-

narios considered in real data [11], we opted not to use the

standard SELMA split, but downloaded over 24k samples

in the ClearNoon, ClearNight, HardRainNoon, MidFoggy-

Noon splits. In total, for this work, we employed almost

100k SELMA samples from the Desk Cam point of view

that match the one used in the real-world dataset. As the

real counterpart, we used the ACDC dataset, from which we

selected the 3 domains — night, rain, and fog — that match

our pretraining. As ACDC lacks images in clear weather,

we supplemented it with daytime images coming from the

Cityscapes dataset [1], which is the most similar to ACDC.

Note that, the ACDC dataset has been built to create an ad-

verse condition version of Cityscapes, and shares the same

class-set. Cityscapes provides more samples than those in

the thematic splits by ACDC. Therefore, we subsampled its

training set to match the sizes. Since the goal was to select

clear weather conditions, we devised an automatic way of

assigning a sunlit level (Eq. 1) to each image and selected

the needed images by sorting them according to this metric:
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Figure 1. Cityscapes samples and corresponding sunlit score. Decreasing from the left, high/mid/low-score (∼ 300/200/100).
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Figure 2. Distribution of weather conditions across clients

sunlit(X) =
∑

c∈{r,g,b}

1

HW

W∑

i=0

W∑

i=0

X[i, j, c] (1)

As shown in ?? in the main paper, we selected a set of im-

ages to match the total count of all other conditions com-

bined, aiming for a ratio of three clear sky images to one

adverse condition. This decision was driven by the desire

to retain “clear sky” as the most probable scenario in real-

world contexts. In Fig. 1 we report some examples of sam-

ples with their rating (a bright one, a dark one and a mid-

range one).

2.2. Aerial Dataset

A demo video of the dataset is available at https://

github.com/LTTM/HyperFLAW.

FLYAWARE-S: Adverse Synthetic Dataset. Recently

released, Syndrone [10] is a synthetic dataset based on the

CARLA simulator [2]. While the dataset is richly annotated

with 28 semantic classes, it currently lacks imagery in

different weather conditions. We extended their work

starting from the codebase provided in [10] by generating

images in 3 adverse weather conditions (i.e., rain, fog, and

night), while maintaining the capability of the system to

produce images from multiple viewpoints and heights. The

dataset includes drone views at heights ranging from 20 to

80 meters and with angles varying from 30 to 90 degrees,

all with a resolution of 1920x1080. Moreover, we also

generated 3D data (depth maps and LiDAR) for future

usage in multimodal architectures.

FLYAWARE-R: Real Dataset Translation. Since no

adverse weather dataset for aerial vehicles is available

we opted for using image translation over standard drone

datasets to build the adverse weather imagery. Addressing

the task of converting daytime images into adverse condi-

tions requires the availability of images of clear weather

samples like sunny or cloudy conditions, and of adverse

samples occurring in specific conditions of interest, such

as rainy weather. Inspired by [6] which performs adverse

domain translations for autonomous driving in the context

of depth estimation, we opted for the use of Generative Ad-

versarial Networks (GANs). For the rain and night adverse

conditions, we employed the ForkGAN model [17] to trans-

late clear-day training samples from the UAVid dataset [8].

While for the fog samples, we have used a combination of

Omnidata [4] and FoHIS [16] methods. In the following,

we will present an in-depth explanation of how we have per-

formed the aforementioned conversion.

Day2Night. To convert daylight into nighttime, we trained

ForkGAN over 14K images, half of which represent day-

time and the other half nighttime. All the used images were

sampled from Visdrone [18], and UAVDT [3], two datasets

designed for Object Detection. We have decided to sam-

ple the training data from different datasets to increase the

overall number of nighttime images. This was necessary

to ensure that the GAN architecture reaches good enough

reconstruction performance. The training phase lasted 40
epochs. After the training, for all the nighttime samples in

the UAVid dataset, we convert clear-day images into their

nighttime counterparts using the pretrained model.

Day2Rain. Training the GAN models directly on drone

data proved advantageous as it helped to mitigate domain

shifts. In the rain case however there are no available drone

datasets - not even for other tasks as in the case of night

images -, therefore we had to train ForkGAN using di-

verse datasets that included adverse weather scenarios, like

BDD100K [15], ACDC [11] and RainCityscapes [7] (which

are datasets for automotive applications). For daytime to

rainy conversion, we followed the same strategy applied for

https://github.com/LTTM/HyperFLAW
https://github.com/LTTM/HyperFLAW
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Table 1. Per class IoU for the proposed approach and its ablated versions.
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Figure 3. Weather classifier architecture model.

the conversion to nighttime training the ForkGAN model

over 9K images for 40 epochs and we applied the pretrained

model to convert images into their rainy counterparts.

Day2Fog. To perform daytime to foggy conversion we first

estimated a depth map for each image in the UAVid dataset

using Omnidata [4], then, we exploited the estimated depth

as input to the FoHIS method [16] to apply fog.

2.3. Weather Heterogeneity

Scenario i: Fig. 2a illustrates the weather distribution

among clients in the configuration ACDC+ FLYAWARE-

R. We deliberately supplied clear day samples to each client

to emulate a common scenario where clear daylight condi-

tions prevail, with fewer instances of challenging weather

conditions. This introduces an inherent challenge as ad-

verse weather data samples are less prevalent. Additionally,

the imbalance among clients further complicates the setting.

Scenario ii: Fig. 2b shows the weather distribution for

clients in the ACDC+FLYAWARE-R-XL setup. While

this configuration exhibits better data balance across clients,

it introduces new complexities: some drone clients exclu-

sively operate in adverse conditions, and the training and

testing domains originate from different datasets (VisDrone

[18] and UAVid [8], respectively). Notably, VisDrone im-

ages offer real night data, whereas we utilized domain-

translated images for fog and rain using the same strategies.

Scenario iii: Fig. 2c shows the weather distribution for

clients in the ACDC+FLYAWARE-R-XL setup in the ex-

treme case where each client observes a single weather con-

dition. Although the number of clients is balanced in terms

Modules Clear Night Rain Fog

Pretrain 25.41 13.62 26.72 26.08

Lst + AG w/o BN 29.27 13.47 29.47 27.86

Lst + AG w BN 26.81 13.50 30.19 28.86

ALL w/o BN 31.58 14.04 30.53 28.93

ALL w BN 31.73 14.18 34.19 29.86

Table 2. Effect of the different modules on the weather.

of different viewpoints, operating in a single weather con-

dition implies less training variability.

3. Impact of Weather-Batch Normalization

As shown in ?? of the main paper, the inclusion of ad-hoc

batch norms (BNs) enhances performance in comparison to

utilizing a non-personalized network. First of all, in Fig. 3,

we show in detail the architecture of the weather classifier.

Although the classifier model is simple, it achieves an ac-

curacy of 98.96% on the source synthetic datasets used to

train it and of 72.37% on the real world target ones.

We further examine in Tab. 2 the advantage of adapt-

ing the system to accommodate different weather condi-

tions as a remarkable feature for the decision-making of au-

tonomous driving agents. The basic self-training strategy,

coupled with the proposed server-side aggregation scheme,

has shown stability and an overall improvement over pre-

training. However, due to the prevalence of clear-day im-

ages in most clients’ samples, the network tends to learn

more about this weather condition. Introducing the person-

alized weather BNs helps to mitigate this, improving per-

formances in adverse weather conditions, with an mIoU in-

crease of 3% on Rain and 1.78% on Fog. Similar results are

evident when comparing the full method with and without

the weather BNs, showcasing mIoU increases of 3.66% on

Rain and 0.93% on Fog. As a side note, the most difficult

scenario remains the night where the improvement over the

pretraining is just 0.56% of mIoU. Overall, we remark on

the significance of incorporating personalized weather BNs

for mitigating bias towards clear day images and enhancing

performance across various weather conditions.



50 100 150 200 250
cl

27.0

27.2

27.4

27.6

27.8

28.0

28.2

28.4

m
Io

U
mIoU vs cl

w/o prototypess

Figure 4. Tuning on λcl weight.

Method Backbone # Params
Supervised

on

Unsup.

on

City

mIoU

FedDrive [5] BiseNetV2 8.2M City – 43.85

Fed. Oracle† MobileNetV2 3.4M City – 58.16

Fed. Fine-Tune† MobileNetV2 3.4M GTAV → City – 59.35

Source Only MobileNetV2 3.4M GTAV – 20.23

LADD [12] † MobileNetV2 3.4M GTAV City 36.49

Ours MobileNetV2 3.4M GTAV City 38.21

Table 3. GTA → Cityscapes results.

As a final note, considering that modern vehicles often

have access to real-time weather information through sev-

eral sensors (e.g., automatic windshield wipers for rain de-

tection, clock or optical light detection for night and fog),

and the weather information might be directly obtained.

4. Additional Parameters Ablation

Fig. 4 shows the mIoU for different values of the λcl pa-

rameter. Best performances are achieved in the range 140-

180, with quite stable maxima. We report the effect of the

queue aggregation parameter Q, which stabilizes at value 5

(Fig. 5). Finally, the network does not exhibit sensitivity to

the smoothing parameter of the prototypes β (β = 0.85) (

Fig. 6).

5. Per-class Results

Tab. 1 contains a more detailed version of the results in

?? of the main paper that also shows the class-by-class ac-

curacy. As common on the employed datasets, the mIoU is

higher in the common classes (e.g., road or building) and

lower in the rare and more challenging ones. However, it

can be seen that by adding the various components of the

model, results tend to increase consistently in most classes,

even if a few challenging ones remain hard to detect. Some

classes like traffic sign, car or bicycle show impressive im-

provements. On the other side, there are a few cases in

which our approach does not improve the results on some

Figure 5. Tuning on the queue aggregation parameter Q.

Figure 6. Tuning on the prototype smoothing parameter β.

under-represented classes such as terrain and rider.

6. Qualitative Results

Fig. 7 shows some qualitative results for car and drone

samples in both clear and adverse weather. FedAvg [9] and

LADD [12] appear to be overconfident on the road and car

classes, respectively. While our model adeptly captures the

structure of the street better than other models in both ad-

verse and non-adverse conditions, the adverse conditions

images remain a challenging aspect. For drones, the dis-

crepancies between the predicted classes and the ground

truth arise also due to the fact that the network is trained

on a superset of classes beyond those present in the drone

dataset. Notice that sometimes the network assigns “fine”

classes that share a semantic affiliation with the respective

“coarse” classes, e.g., predict terrain instead of vegetation,

but on the drone dataset labeling terrain is not present and

terrain samples have ground truth set to vegetation. The

same thing happens for the sidewalk and road or rider and

person. For this reason, we remapped the 19 classes of the

full set into the 5 drone ones using the mapping proposed

in [10]. The figure shows both the original prediction maps

from the network and the ones obtained after remapping the

19 classes into the 5 of the drone datasets. The compari-

son with the ground truth shows that some predictions not

matching are just due to the different types of labeling in

drone and car datasets.
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Figure 7. Qualitative results.

7. Comparison over GTA → Cityscapes

We demonstrate the advantage of our approach in trans-

ferring a more generalizable representation from synthetic

to real-world urban environments, even in scenarios not in-

volving drones. To this end, we evaluated our method on

the GTA → Cityscapes domain adaptation task, with results

presented in Tab. 3. We utilized the same federated split

of Cityscapes as employed in previous works [5, 12] to en-

sure a fair comparison. Our approach outperforms previous

unsupervised methods and narrows the gap with supervised

techniques. Specifically, we achieve results that are only 5.6

mIoU lower than the supervised method in [5], while using

a less complex model.
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