
A. Dataset Details
A.1. Tire Development Process

Figure 6. Illustration of the tire development process. An engi-
neer designs tire specifications, and a tire is manufactured to those
specifications. For the manufactured tire, photographs are taken
of the area where the tire touches the ground under various test
conditions, which is called the tire footprint image. Our goal is to
generate a tire footprint image directly from the tire specification
and test conditions without manufacturing the tire.

In the tire manufacturing industry, the development of
new tires is both labor-intensive and resource-demanding.
Initially, engineers design a tire by detailing various techni-
cal specifications, which guide the creation of experimental
prototypes. A crucial step in evaluating these prototypes in-
volves capturing images of the tire’s contact patch with the
ground, referred to as tire footprints, under diverse condi-
tions. These footprints are essential for assessing the tire’s
performance and for engineers to visually verify that the
prototype matches their design intentions. Often, this evalu-
ation leads to further adjustments in tire specifications. Fig.
6 shows the process for developing a tire.

Figure 7. An illustration of tire footprint

Tire Footprint plays a very important role in the tire de-
velopment process. Tire developers look at the Tire Foot-
print to not only determine if their design is working as in-
tended, but also to quantify the image to evaluate the per-
formance of the tire. Here are three of the tire performance
metrics we used in our experiments. Figure 7 illustrates the
description of the tire footprint image, and Figure 8 shows
an example of a tire footprint.

Tire Specification A

Tire Specification B

Tire Specification C

Tire Specification D

Tire Specification E

Figure 8. Ground truth images for increasing test load, ! in order.
As the test load increases, the contact area increases.

A.2. Example of Tabular Data

Table 4 provides examples of tabular data. With 116 fea-
tures in total, it is impractical to show all of them, so we
highlight key examples. For instance, the tire specification
features include ”Pattern” (a categorical feature) and ”Tire
Size” (a numeric feature). Additionally, graphical features
such as ”CTB Step Width” and ”CTB Step Gauge” denote
position and value, respectively, forming a graph when con-
nected. Test condition features include ”Test Load” and
”Inflation air,” where ”Test Load” indicates the load ap-
plied to the tire (affecting the contact area) and ”Infla-
tion air” denotes the tire’s air pressure. These two test con-
ditions are the main conditions for tire development, and
the ground contact area of the tire will increase or decrease
depending on the change in test conditions.

Table 4. Examples of tabular data

Feature Name Tire Spec or Test Condition Type Example

Pattern Tire Specification Category H826
Tire Size Tire Specification Numeric 250

...
CTB Step Width Tire Specification Graph 5.0-3.0-7.0-6.0-...
CTB Step Gauge Tire Specification Graph 0.0-0.2-0.2-0.2-...

...
Inflation air Test Condition Numeric 3.4

Test load Test Condition Numeric 256

A.3. Example of Graphical Feature

Figure 9. Illustration for graphical feature

A Graphical Feature refers to the structure of a specific
part used in a tire. Tabular data is recorded in two cate-
gories: position and value. We visualize it and generate an
embedding using a CNN. This data preprocessing approach
demonstrates the scalability of tabular-to-image conversion
for multi-modal applications. Figure 9 illustrates the exam-
ple of graphical feature.

B. Implementation Details
B.1. Latent Diffusion U-net

32
, 3

2

4

32
, 3

2

64

16
, 1

6

128

16
, 1

6

128

32
, 3

2

16
, 1

6

8,
 8

256

8,
 8

256

8,
 8

512 512

4,
 4

4,
 4

512

4,
 4

2,
 2

512

2,
 2

1024

2,
 2

1024

2,
 2

2,
 22,

 2

32
, 3

2

128 4

32
, 3

2

128

32
, 3

2

16
, 1

6

8,
 8

16
, 1

6

256

16
, 1

6

4,
4

512

8,
 8

8,
 8

512

2,
 2

4,
 4

4,
 4

256

128

512

512

Input
image
latent

32
, 3

2

Output
image
latent

Cross Attention

Copy and Concat

Max pool 2x2

UpSample 2x2

DoubleConv

Conv 1x1

Figure 10. Illustration of the U-net structure.

The structure of the U-net we use is depicted in Figure
10. It consists of five downsampling and five upsampling

steps, projecting the embedding into latent space using a
VAE. In the encoder part, which performs the downsam-
pling, we apply cross-attention on the embedding before
downsampling. Similarly, in the decoder part, which han-
dles the upsampling, cross-attention is applied after upsam-
pling. We condition the embedding created by the Tabular
encoder by performing cross-attention on a layer of the U-
Net.

B.2. Transform Tabular Data into Natural Lan-
guage

In Experiment 4.4, we also examined the results of
using natural language models to convert tabular data into
natural language. We transformed the tabular data into
natural language, except for graphical features, which we
converted into natural language for feature names and
feature values. Below are some examples of transforming
tabular data into natural language:
Pattern: H825
Tire Size: 250
.
.
Inflation air: 3.4
Test Load: 256

The graphical features were generated as embeddings by
a CNN and concatenated with embeddings generated
by a natural language model. This experiment involved
replacing the tabular encoder in the CTIP framework with
an encoder that solely utilizes a natural language model.

B.3. Hyperparameter Settings
First, we pre-train on CTIP. CTIP will be trained with a

total of 30 epochs and will only be trained with the train
dataset. We freeze the weights of the tabular encoder on
the pre-trained CTIP and then train DF-GAN and LDM on
the pre-trained CTIP. DF-GAN is trained for a total of 100
epochs, and LDM is trained for a total of 1000 epochs. Rel-
atively speaking, LDM is faster to train, taking about the
same amount of time (36 hours). In the case of LDM, VAE

Table 5. CTIP hyperparameter setting

CTIP DF-GAN LDM

Batch size 128 128 128
Embedding dimension 256 256 256

Learning rate 0.001 0.0001 0.0001
Training epochs 30 100 1000

Adam �1 0.0 0.0 0.0
Adam �2 0.9 0.9 0.9

Temperature t 0.01 - -
ViT layers 4 - -
ViT heads 4 - -

ViT patch size 4 - -

imports and uses pre-trained weights.

C. Experiment Details
C.1. Tire Performance Metrics

Contact
Area

Contact
Length

Contact
Width

Figure 11. Illustration of tire performance metrics.

The Tire Performance metrics CL, CW, and CA are cal-
culated based on the contact area of the tire. To measure
these, we first remove the background of the generated im-
age, retaining only the tire footprint—defined as the area
where the tire has made contact—and set the remaining
pixel values to zero. CL is determined by measuring the
distance from the topmost to the bottommost non-zero pixel
within the tire footprint. CW is measured from the leftmost
to the rightmost non-zero pixel within the tire footprint. CA
is calculated as the total number of non-zero pixels, rep-
resenting the area touched by the tire. These metrics are
crucial for evaluating tire performance and are used to rate
tires based on specific criteria. Figure 11 shows an example
of a tire performance metric.

C.2. Image Results
Figures 12 and 13 showcase the results of experiments

using a tabular encoder and a BERT encoder, respectively.
These figures display the outcomes for three test conditions
with two tire specifications and the resulting images gen-
erated by both DF-GAN and LDM with and without pre-
trained models. Overall, the tabular encoder produced more

accurate images compared to using BERT with text conver-
sion of the tabular data. Although pre-training with CLIP
after generating embeddings with BERT by converting the
tabular data to text led to more accurate images, they were
not as precise as those produced by pre-training the tabular
encoder with CTIP.

On the other hand, using a tabular encoder and pre-
training it with CTIP resulted in nearly accurate tire foot-
prints. Improvements were observed for both DF-GAN and
LDM, with LDM showing the best performance when pre-
trained with CTIP. It is evident that this approach accurately
captures the geometry of the tire footprint, which is crucial
for reliable image generation.

C.3. Few-shot and Zero-shot Image Results
Figure 14 shows the result images for feature few-shot

and zero-shot. Without CTIP, the generated images look
significantly different from the GT images and tend to ran-
domly produce certain patterns, which is a poor result as it
generates incorrect images. In contrast, when CTIP is used,
the tire footprint shape is generated more accurately. No-
tably, in the first pattern case, feature zero-shot, the overall
shape is roughly correct. Additionally, with CTIP, unseen
patterns appear blurred rather than being randomly gener-
ated. These results demonstrate that CTIP is effective in
generating robust images, even in challenging cases.

C.4. Pesudo Code for Evaluating CTIP through Im-
age Similarity

Algorithm 1 presents the pseudocode for the experiment
detailed in Analysis 5.3. To validate that CTIP indeed pro-
duces high-quality embeddings, we conducted an experi-
ment to determine if the similarity between real images
and the embeddings from a tabular encoder pre-trained with
CTIP are closely aligned. Initially, we compute the LPIPS
(Learned Perceptual Image Patch Similarity) between the
ground truth images of the test set to create an N ⇥N ma-
trix SLPIPS (steps 3-11 in Algorithm 1). Subsequently, we
generate embeddings for the test set from both the CTIP-
trained and untrained tabular encoders. We then measure
the Euclidean distance between these embeddings to create
the N ⇥N matrices Dwith CTIP and Dwithout CTIP (steps 12-23
in Algorithm 1). Finally, we compute the cosine similarity
of Dwith CTIP and Dwithout CTIP against SLPIPS . By compar-
ing the two cosine similarities, we analyze the results as
shown in Analysis 5.3.

Ground Truth
DF-GAN
w/o CLIP

DF-GAN
with CLIP

LDM
w/o CLIP

LDM
with CLIP

Tire Specification A, Test Condition 1

Tire Specification A, Test Condition 2

Tire Specification A, Test Condition 3

Tire Specification B, Test Condition 1

Tire Specification B, Test Condition 2

Tire Specification B, Test Condition 3

Figure 12. Examples of tire footprint images for three test conditions using CTIP.

Ground Truth
DF-GAN
w/o CLIP

DF-GAN
with CLIP

LDM
w/o CLIP

LDM
with CLIP

Tire Specification A, Test Condition 1

Tire Specification A, Test Condition 2

Tire Specification A, Test Condition 3

Tire Specification B, Test Condition 1

Tire Specification B, Test Condition 2

Tire Specification B, Test Condition 3

Figure 13. Examples of tire footprint images for three test conditions using clip.

Ground Truth
DF-GAN
w/o CTIP

DF-GAN
with CTIP

Latent Diffusion
w/o CTIP

Latent Diffusion
with CTIP

Feature Few-shot case, Test Condition 1

Feature Few-shot case, Test Condition 2

Feature Few-shot case, Test Condition 3

Feature Zero-shot case, Test Condition 1

Feature Zero-shot case, Test Condition 2

Feature Zero-shot case, Test Condition 3

Figure 14. Examples of the feature few-shot & zero-shot cases, where there is under five tire specifications with the same tire pattern in the
train dataset. The zero-shot case is that there are no tire specifications with the same tire pattern in the train dataset.

Algorithm 1 Pesudo code for Evaluating CTIP through Image Similarity
1: Input: gt images Igt, condition embeddings with CTIP Ewith CTIP, condition embeddings without CTIP Ewithout CTIP
2: Output: Cosine Similarity
3: procedure IMAGEMATRIX(Igt)
4: N Numer of test sets
5: Initialize SLPIPS as a N ⇥N matrix
6: for each pair of images in Igt do
7: Compute LPIPS similarity
8: Update SLPIPS
9: end for

10: return SLPIPS
11: end procedure
12: procedure DISTANCEMATRIX(Cwith CTIP, Cwithout CTIP)
13: N Numer of test sets
14: Initialize Dwith CTIP as a N ⇥N matrix
15: Initialize Dwithout CTIP as a N ⇥N matrix
16: for Cwith CTIP, Cwithout CTIP do
17: for each pair of embeddings do
18: Calculate Euclidean distance
19: Update Dwith CTIP or Dwithout CTIP
20: end for
21: end for
22: return Dwith CTIP, Dwithout CTIP
23: end procedure
24: procedure COMPUTE COSINE SIMILARITY(Dwith CTIP, Dwithout CTIP, SLPIPS)
25: Calculate cosine similarity between SLPIPS and Dwith CTIP
26: Calculate cosine similarity between SLPIPS and Dwithout CTIP
27: end procedure
28: SLPIPS IMAGEMATRIX(Igt)
29: Dwith CTIP, Dwithout CTIP DISTANCEMATRIX(Cwith CTIP, Cwithout CTIP)
30: COMPUTECOSINESIMILARITY(Dwith CTIP, Dwithout CTIP, SLPIPS)

