
Supplementary for
GStex: Per-Primitive Texturing of 2D Gaussian Splatting

for Decoupled Appearance and Geometry Modeling

1. Video Results

Video results can be viewed on our project page website:
https://lessvrong.com/cs/gstex. We include
novel view synthesis renderings for all key figures of our
paper. The videos are best viewed on the Chrome browser.

2. Implementation Details

Texture implementation. Let Tj =
∑j

i=1 UiVi be the
number of texels of the first j Gaussians. We represent our
texture as a Tn × 3 tensor, where the i Gaussian’s texture
map can be found flattened from indices Ti−1 to Ti − 1.
During rendering via the CUDA kernel, along with the typ-
ical Gaussian parameters passed in 2DGS, the texture along
with arrays Ti, Ui, and Vi are passed in as well. When a
ray intersects Gaussian i in the CUDA kernel, knowledge
of Ti−1 is needed to locate the subarray corresponding to
the ith Gaussian’s texture map, and Ui and Vi are neces-
sary to simulate reshaping into a 2D grid and querying into
the correct indices. Note that the ith Gaussian’s texture map
are not loaded into shared memory like with the other Gaus-
sian parameters. The individual texture maps are simply too
large. We do, however, load Ti−1, Ui, Vi into shared mem-
ory.

Texture painting. We elaborate on our texture painting
method, which casts an edited image onto the textured
Gaussian splats from a given viewpoint. For each texel of
the GStex model, we aggregate the RGBA values of the rays
which hit it so as to propose an updated texel color. To ac-
commodate the transparency of Gaussians, we weight these
aggregated values by the transmittance of each ray when it
hits the texel, as well as the coefficient from bilinear inter-
polation. In actuality, some pixels of the edited image may
be unedited, or have low alpha from filtering of a stroke.
As such, the final texel colors should be interpolated be-
tween the original texel colors and the aggregated edited
texel color. More precisely, for texel τ that is intersected
with rays of RGBA values (ĉi, αi) with combined (between

Blender DTU
Method PSNR SSIM LPIPS PSNR SSIM LPIPS

GStex 33.25 0.969 0.024 32.87 0.956 0.038

w/o stop gradient 33.07 0.968 0.024 32.82 0.956 0.039
reset never 33.23 0.969 0.024 32.94 0.956 0.037
reset every 33.01 0.967 0.026 32.88 0.955 0.040

Table 1. Ablation experiments for novel view synthesis and ren-
dering performance on the synthetic Blender dataset and DTU
dataset. The first row, GStex, refers to our method exactly as de-
scribed in the paper. The next three rows give various metrics
upon adjusting certain design choices. We report PSNR ↑, SSIM
↑, LPIPS ↓.

interpolation and transmittance) weight ωi, we compute

τedit =
∑

ĉiαiωi,

w0 =
∑

αiωi,

w1 =
∑

(1− αi)ωi.

Then the updated texel color τnew interpolates between the
edited texel value τedit and the original texel value τorig with
weight w0/(w0 + w1):

τnew =
w0τedit + w1τorig

w0 + w1
.

When updating the texture values, we ensure that only
texels within 1×10−2 (in normalized depth coordinates) of
the median depth from the corresponding view are altered.
After this editing process, we can visualize the edited scene
from any viewpoint in a 3D-consistent fashion.

3. Additional Experiments
3.1. Evaluation Over Design Choices.

We show the results of three of our design choices in
Table 1. In the first, we check the stop on the gradient be-
tween texture colors and Gaussian geometries. Allowing
the gradient (“w/o stop gradient”) decreases the visual qual-
ity slightly. In the other two rows, we evaluate the effect of

1

https://lessvrong.com/cs/gstex

Method Outdoor Indoor

Bicycle Garden Stump Bonsai Counter Kitchen Room Mean

3DGS 25.18 27.23 26.55 32.13 28.99 31.31 31.36 28.96
2DGS 24.79 26.74 26.19 31.32 28.08 30.40 30.57 28.30

GStex (107) 24.84 27.05 26.30 31.90 28.62 31.00 31.25 28.71
GStex (108) 24.91 27.15 26.36 32.05 28.68 31.12 31.37 28.81

3DGS 0.763 0.862 0.771 0.940 0.906 0.925 0.917 0.869
2DGS 0.742 0.850 0.759 0.933 0.895 0.919 0.911 0.858

GStex (107) 0.747 0.857 0.763 0.938 0.902 0.924 0.916 0.864
GStex (108) 0.752 0.861 0.766 0.939 0.905 0.926 0.919 0.867

3DGS 0.212 0.109 0.216 0.205 0.202 0.127 0.221 0.185
2DGS 0.214 0.098 0.192 0.147 0.183 0.111 0.188 0.162

GStex (107) 0.201 0.088 0.176 0.136 0.169 0.102 0.177 0.150
GStex (108) 0.192 0.083 0.172 0.125 0.158 0.097 0.167 0.142

3DGS 6000K 5700K 4900K 1300K 1200K 1800K 1500K 3200K
2DGS 5300K 3200K 3500K 810K 660K 850K 890K 2200K

GStex (107) 5300K 3200K 3500K 810K 660K 850K 890K 2200K
GStex (108) 5300K 3200K 3500K 810K 660K 850K 890K 2200K

Table 2. Novel view synthesis metrics for individual scenes on the MipNeRF-360 dataset. We report PSNR ↑, SSIM ↑, LPIPS ↓, and
number of Gaussians, respectively.

resetting the texel size more or less often. In “reset never”,
we do not change the texel size at all after initialization. In
“reset every”, we change it after every initialization. In the
actual method, GStex, we reset every 100 iterations. There
is not a strong trend in either direction, suggesting that the
choice of reset frequency is not significant.

3.2. Large-Scale Scenes

Though our focus is on object-centric scenes, our method
still functions for large-scale scenes such as the MipNeRF-
360 dataset [1]. We evaluate our method in Table 2. We use
the same experimental set-up as with Table 1 of the main
paper except that we use 107 and 108 texels rather than 106,
as the number of Gaussians in the scenes are much greater.
During the initial 2DGS training, normal regularization was
enabled with a coefficient of 0.05 while it was disabled dur-
ing GStex training. No distortion regularization was used in
either stage. Similarly to the Blender and DTU scenes, we
observe minor improvements in visual metrics compared to
2DGS. Even with 108 texels, the texels may be fairly large
compared to the details in training and test images, as shown
in Figures 2 and 3. In unbounded scenes especially, there
is large variation in the range between camera views and
individual Gaussians. As a result, the texels of foreground
Gaussians cover a disproportionate area in the renders while
background texels are undersampled and exhibit aliasing ar-
tifacts.

4. Experiment Details
We give additional details for the experiments presented

in the paper.

4.1. Captured Scene

To validate the usefulness of GStex on real data, we
capture our own scene, whiteboard. We choose a stand-
ing whiteboard with four visually apparent pieces of pa-
per taped onto one side, and red marker drawings on an-
other. We captured a move-around video with a Galaxy S21
mobile phone. During capture, we kept ISO and shutter
speed fixed to minimize photometric inconsistency. From
the video, we selected frames that represent wide range of
viewpoints while minimizing motion blur, and we utilize
SwinIR [5] to remove compression artifacts. Segmentation
masks are generated using Segment Anything [4] with man-
ual point prompts, and the output masks are further manu-
ally painted to remove visible holes and islands. After run-
ning COLMAP on our data, 126 images remained, which
we undistorted and split into a train and test sets following
the intervals of 8 practice typically used for real-world cap-
tures [1].

4.2. Novel View Synthesis

Full results to the novel view synthesis are listed in Ta-
bles 3 and 4. We use the official implementations of 3DGS

Figure 1. We drew various shapes and cast them from different
views onto the Lego model.

[3], 2DGS [2], and Texture-GS [6]. We use the default hy-
perparameters for all. For 2DGS, their codebase had up-
dated since the paper release and had tweaked the densifi-
cation condition. More specifically, the version of the code-
base which we worked with intentionally zeroed out gradi-
ents for Gaussians when they were sufficiently small to use
their anti-aliasing blur. This noticeably reduced the number
of Gaussians that were densified at a small cost to photo-
metric quality, which the authors recommend.

For our evaluation of Texture-GS, we use their de-
fault training pipeline which has three stages composed of
30,000, 20,000, and 40,000 iterations, totalling to 90,000 it-
erations. Though this is 3× that of GStex as well as 2DGS
and 3DGS, we find that the visual quality of Texture-GS is
noticeably behind others.

To calculate all metrics, we first quantize render RGBs
to unsigned 8-bit integers before converting back to the
float range [0, 1] and applying the metric calculations. For
LPIPS, we use version 0.1 with AlexNet activations.

4.3. Geometric Level of Detail

We give additional qualitative results for the geometric
level of detail experiment. In Figures 4 and 5, we compare
2DGS and GStex in discrete level of detail for the remaining
scenes not shown in Figure 6 of the main paper.

4.4. Appearance Editing

Texture painting. In Figure 1, we include the 2D images
drawn on the Lego models in Figure 7 of the main paper.

Procedural textures. We evaluate the colors resulting
from the procedural textures at the centers of each texel in
world coordinates. In our implementation, we do this within
the PyTorch framework. In Figure 8 of the main paper, we

demonstrate the procedural texture

d(x, y, z) = ||(x, y, z)− (⌊x⌉, ⌊y⌉, ⌊z⌉)||2
R1(x, y, z) = 0.5(sin(d) + 1),

G2(x, y, z) = 0,

B2(x, y, z) = 0.5 (1− sin(d)) ,

where ⌊t⌉ is t rounded to the nearest integer, creating circle-
like patterns of blue and red. We also have the simple

R2(x, y, z) = 0.5 (sin(x) + 1) ,

G2(x, y, z) = 0.5 (sin(y) + 1) ,

B2(x, y, z) = 0.5 (sin(z) + 1) ,

inducing axis-aligned stripes of color.

References
[1] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-NeRF: A multiscale representation for anti-aliasing neu-
ral radiance fields. In Proc. CVPR, 2021. 2

[2] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2D Gaussian splatting for geometrically ac-
curate radiance fields. In Proc. SIGGRAPH, 2024. 3

[3] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and
George Drettakis. 3D Gaussian splatting for real-time radi-
ance field rendering. In Proc. SIGGRAPH, 2023. 3

[4] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross
Girshick. Segment anything. In Proc. ICCV, 2023. 2

[5] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. SwinIR: Image restoration
using Swin transformer. arXiv preprint arXiv:2108.10257,
2021. 2

[6] Tian-Xing Xu, Wenbo Hu, Yu-Kun Lai, Ying Shan, and Song-
Hai Zhang. Texture-GS: Disentangling the geometry and tex-
ture for 3D Gaussian splatting editing. In Proc. ECCV, 2024.
3

Render Texels

Figure 2. MipNeRF-360 outdoor scenes. We provide test-set renders and texel visualizations of GStex with 108 texels applied to the
outdoor scenes of MipNeRF-360. Each cell of the checkered Gaussians indicates a single texel. Note that the texel visualizations omit
Gaussians with opacity < 0.5.

Render Texels

Figure 3. MipNeRF-360 indoor scenes. We provide test-set renders and texel visualizations of GStex with 108 texels applied to the indoor
scenes of MipNeRF-360. Each cell of the checkered Gaussians indicates a single texel. Note that the texel visualizations omit Gaussians
with opacity < 0.5.

Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Mean

3DGS 35.90 26.16 34.85 37.70 35.78 30.00 35.42 30.90 33.34
2DGS 35.41 26.12 35.39 37.47 35.25 29.74 35.20 30.66 33.15

Texture-GS 30.20 24.93 30.63 32.52 28.77 26.26 30.81 27.63 28.97
GStex 35.51 26.06 35.65 37.49 35.51 29.72 35.28 30.80 33.25

3DGS 0.987 0.955 0.987 0.985 0.983 0.960 0.992 0.907 0.969
2DGS 0.987 0.954 0.988 0.985 0.981 0.958 0.991 0.903 0.968

Texture-GS 0.950 0.937 0.968 0.962 0.935 0.925 0.975 0.853 0.938
GStex 0.987 0.954 0.988 0.985 0.982 0.958 0.991 0.904 0.969

3DGS 0.012 0.037 0.012 0.020 0.016 0.034 0.006 0.107 0.030
2DGS 0.009 0.039 0.008 0.014 0.012 0.021 0.006 0.087 0.024

Texture-GS 0.049 0.056 0.023 0.042 0.047 0.055 0.020 0.146 0.055
GStex 0.009 0.038 0.008 0.013 0.011 0.020 0.006 0.085 0.024

3DGS 270K 350K 290K 150K 320K 280K 310K 330K 290K
2DGS 100K 140K 50K 70K 160K 130K 150K 160K 120K

Texture-GS 60K 80K 20K 40K 100K 60K 30K 40K 50K
GStex 100K 140K 50K 70K 160K 130K 150K 160K 120K

Table 3. Novel view synthesis metrics for the synthetic Blender dataset. We report PSNR ↑, SSIM ↑, LPIPS ↓, and number of Gaussians,
respectively, for individual scenes.

Method 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean

3DGS 30.48 26.97 29.57 31.76 35.44 31.29 28.24 38.42 30.08 34.12 35.07 34.61 31.08 37.59 38.34 32.87
2DGS 29.99 26.18 28.77 31.30 34.35 30.76 27.90 37.72 29.77 33.46 34.93 33.32 30.58 36.69 37.60 32.22

Texture-GS 27.63 25.31 27.83 27.04 33.62 30.02 27.72 37.22 28.43 31.91 32.73 30.41 28.95 34.50 34.65 30.53
GStex 30.77 26.91 29.63 31.85 35.28 31.17 28.10 38.42 30.21 33.92 35.27 34.55 31.16 37.65 38.23 32.87

3DGS 0.937 0.919 0.917 0.963 0.971 0.965 0.938 0.981 0.950 0.963 0.963 0.970 0.951 0.975 0.980 0.956
2DGS 0.909 0.888 0.881 0.950 0.958 0.958 0.927 0.972 0.937 0.945 0.949 0.952 0.936 0.963 0.970 0.940

Texture-GS 0.875 0.886 0.847 0.893 0.949 0.955 0.908 0.970 0.923 0.924 0.927 0.936 0.907 0.944 0.955 0.920
GStex 0.937 0.921 0.916 0.965 0.971 0.965 0.935 0.980 0.949 0.961 0.962 0.968 0.954 0.974 0.979 0.956

3DGS 0.056 0.064 0.103 0.039 0.033 0.050 0.076 0.030 0.057 0.049 0.054 0.060 0.053 0.037 0.025 0.052
2DGS 0.089 0.087 0.147 0.045 0.074 0.093 0.144 0.059 0.098 0.094 0.096 0.093 0.095 0.074 0.060 0.090

Texture-GS 0.086 0.080 0.154 0.089 0.051 0.061 0.123 0.035 0.065 0.093 0.080 0.118 0.103 0.063 0.047 0.083
GStex 0.032 0.042 0.079 0.029 0.022 0.039 0.069 0.020 0.040 0.037 0.039 0.040 0.042 0.024 0.018 0.038

3DGGS 670K 700K 1010K 740K 130K 190K 210K 80K 360K 220K 280K 110K 300K 170K 180K 360K
2DGS 320K 440K 590K 330K 80K 90K 110K 50K 180K 120K 130K 60K 110K 100K 90K 190K

Texture-GS 60K 100K 120K 110K 20K 30K 50K 20K 60K 40K 50K 20K 50K 40K 40K 50K
GStex 320K 440K 590K 330K 80K 90K 110K 50K 180K 120K 130K 60K 110K 100K 90K 190K

Table 4. Novel view synthesis metrics for individual scenes on the DTU dataset. We report PSNR ↑, SSIM ↑, LPIPS ↓, and number of
Gaussians, respectively.

2DGS GStex 2DGS GStex 2DGS GStex

N
um

be
ro

fG
au

ss
ia

ns
←−
−−
−−
−−
−−
−−
−−
−−
−−

2DGS GStex 2DGS GStex

N
um

be
ro

fG
au

ss
ia

ns
←−
−−
−−
−−
−−
−−
−−
−−
−−

Figure 4. Novel view synthesis for discrete levels of detail. We show test set renders of GStex and 2DGS models in three settings of
levels of detail: with 128, 512, and 2048 Gaussians. We show our results on the Blender synthetic scenes not shown in the main paper.

2DGS GStex 2DGS GStex 2DGS GStex

N
um

be
ro

fG
au

ss
ia

ns
←−
−−
−−
−−
−−
−−
−−
−

2DGS GStex 2DGS GStex 2DGS GStex

N
um

be
ro

fG
au

ss
ia

ns
←−
−−
−−
−−
−−
−−
−−
−

2DGS GStex 2DGS GStex 2DGS GStex

N
um

be
ro

fG
au

ss
ia

ns
←−
−−
−−
−−
−−
−−
−−
−

2DGS GStex 2DGS GStex 2DGS GStex

N
um

be
ro

fG
au

ss
ia

ns
←−
−−
−−
−−
−−
−−
−−
−

Figure 5. Novel view synthesis for discrete levels of detail. We show test set renders of GStex and 2DGS models in three settings of
levels of detail: with 128, 512, and 2048 Gaussians. We show our results on the DTU scenes not shown in the main paper.

	. Video Results
	. Implementation Details
	. Additional Experiments
	. Evaluation Over Design Choices.
	. Large-Scale Scenes

	. Experiment Details
	. Captured Scene
	. Novel View Synthesis
	. Geometric Level of Detail
	. Appearance Editing

