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A. Supplementary Materials
Here, we present further results and discussions as sup-

plementary materials to facilitate a more comprehensive un-
derstanding of the main findings presented in the main text.
The document is structured as follows: Section A.1 delves
into the mathematical derivations underlying the tractable
regularization term obtained in Section 3.3 of the main
text, offering more detailed insights. Section A.3 presents
more results on the pruned network configurations achieved
through our approach at high sparsity ratios. This includes
visualizations of the pruned configurations obtained from
ResNet110 network on CIFAR10 and CIFAR100 datasets,
as well as the ResNet56 network on the CIFAR10 dataset.
Further, Section A.4 provides an elaborate description of the
experimental settings adopted in this work. Lastly, we dis-
cuss the societal impact of the current work in Section A.5.

A.1. Detailed Mathematical Analysis

In this section, we aim to discuss in greater details the
mathematical derivations that led to the tractable upper-
bound regularization term obtained in the Right Hand Side
(RHS) of the inequality (9) in Section 3.3 of the main paper.

In this regard, recall that as discussed in Section 3.3, the
learning process for hs could be expressed via Information
Bottelneck (IB) [5–7] as

min

{
S∑

s=1

(γsI(hs,X)− I(hs, y))

}
, (1)

where I(hs,X) is the compression term and −I(hs, y) is
referred to as the task fidelity term. We further discussed
that the task fidelity term can be replaced with the main task
loss, and used the compression term to guide the compres-
sion of the network. For this term we can write

I(hs,X) =

∫
X,hs

p(hs,X) log

(
p(hs,X)

p(hs)p(X)

)
dhs dX

=

∫
X,hs

p(hs,X) log

(
p(hs|X)���p(X)

p(hs)���p(X)

)
dhs dX

=

∫
X,hs

p(hs,X) (log(p(hs|X))− log(p(hs))) dhs dX .

(2)

It should be noted that in (2), exact calculation of p(hs)
and consequently, log(p(hs)) is intractable. To solve this
issue, we aim to find an auxiliary distribution capable of
approximating it. Following variational approximation [1,
8], we consider the ratio

(
q(hs)
p(hs)

)
, where q(hs) is assumed

to be the mentioned tractable distribution. Since log(.) is
a concave function, Jensen’s inequality can be applied to
log
(

q(hs)
p(hs)

)
, yielding

Ehs

{
log

(
q(hs)

p(hs)

)}
≤ log

(
Ehs

{
q(hs)

p(hs)

})
= log

(∫
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���p(hs)
q(hs)

�
��p(hs)

dhs

)
= log(1) = 0 . (3)

Now, having obtained Ehs

{
log
(

q(hs)
p(hs)

)}
≤ 0, a simple

rearrangement results in

− log (p(hs)) ≤ − log (q(hs)) . (4)

Since the goal is to minimize I(hs,X), the tractable upper-
bound in the RHS of (4) is used to replace the intractable
− log (p (hs)) in (2). Hence, an upper-bound for I(hs,X)
is obtained as

I(hs,X) ≤
∫
X,hs

p(hs,X) {log(p(hs|X))

− log(q(hs))} dhs dX . (5)

Moreover, inequality (5) can be rewritten in terms of the KL
divergence as

I(hs,X) ≤
∫
X

p(X)

∫
hs

p(hs|X) log

(
p(hs|X)

q(hs)

)
dhs dX

= EX

{
KL
(
p(hs|X)

∣∣∣∣ q(hs)
)}

. (6)

Note that this is the same expression as that of for-
mula (3) in the main paper. As discussed in Section 3.3 of
the main paper and following [1], both p(hs|X) and q(hs)
can be modeled with Gaussian distributions as

p(hs|X) = N (µhs|X, σ2
hs|X) ,

q(hs) = N (0, η2s) . (7)

The distribution of q(hs) is a degree of freedom at
our disposal and can be selected appropriately. There-
fore, the optimum value for ηs that allows q(hs)
to better approximate p(hs|X) is found by solving
d

dηs
KL
(
p(hs|X)

∣∣∣∣ q(hs)
)

= 0. In this regard, we first
find the closed form expression for KL

(
p(hs|X)

∣∣∣∣q(hs)
)
,



then take its derivative d
dηs

. We have

KL
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)
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. (8)

Therefore, the closed form expression for
KL
(
p(hs|X)

∣∣∣∣ q(hs)
)

is found as

KL
(
p(hs|X)

∣∣∣∣ q(hs)
)

= log

(
ηs

σhs|X

)
+

1

2η2s

(
σ2
hs|X + µ2

hs|X

)
− 1

2
. (9)

Now, solving d
dηs

KL
(
p(hs|X)

∣∣∣∣q(hs)
)

= 0 will
yield the optimum value η∗s for the auxiliary distribu-

tion q(hs) = N (0, η2s). This is given by

d

dηs
KL
(
p(hs|X)

∣∣∣∣ q(hs)
)

=
1

ηs
− 2

2η3s

(
σ2
hs|X + µ2

hs|X

)
= 0 , (10)

from which the optimum value η∗s is found as

η∗s =
√
σ2
hs|X + µ2

hs|X . (11)

Therefore, by substituting the optimum value η∗s in the defi-
nition of q(hs) in (7), the proper choice for q(hs) is selected
as

q(hs) = N
(
0, µ2

hs|X + σ2
hs|X

)
. (12)

Further, by substituting the optimum η∗s in (9), the mini-
mum for the KL divergence is found to be

KL
(
p(hs|X)

∣∣∣∣ q(hs)
)
=

1

2
log

(
µ2
hs|X + σ2

hs|X

σ2
hs|X

)

≡ log

(
µ2
hs|X + σ2

hs|X

σ2
hs|X

)
. (13)

The aim is to minimize the RHS of (13). However, it
is worth noting that both µhs|X and σhs|X are intractable.
Alternatively, we can write them in terms of µSCSs|X and
σSCSs|X, given that the representation of hs is considered to
be formed through

SCSs = fs(X) ,

hs = (µs + ϵσs)SCSs . (14)

As discussed previously, fs(.) is a nonlinear function
that also exhibits stochasticity because it is affected by all of
the random variables controlling the saliency of the coupled
sets in the preceding layers. We assume a random variable
ϕ to represent this stochasticity. Then, µhs|X is calculated
as

µhs|X = Eϕ,ϵ {(µs + ϵσs)SCSs |X}
= Eϵ {µs + ϵσs}Eϕ {SCSs|X}
= µs · µSCSs|X , (15)

and for σhs|X we can write

σ2
hs|X = Eϕ,ϵ

{
(µs + ϵσs)

2 SCS2
s |X

}
− E2

ϕ,ϵ {(µs + ϵσs)SCSs |X}
= Eϵ

{(
µ2
s + 2µsσsϵ+ σ2

sϵ
2
)}

Eϕ

{
SCS2

s |X
}

−
(
µs · µSCSs|X

)2
=
(
µ2
s + 0 + σ2

s(0 + 1)
) (

µ2
SCSs|X + σ2

SCSs|X

)
− µ2

s · µ2
SCSs|X

=
(
µ2
s + σ2

s

)
σ2
SCSs|X + σ2

s · µ2
SCSs|X . (16)



Then, substituting µhs|X and σ2
hs|X from (15) and (16) into

(13) yields

KL
(
p(hs|X)

∣∣∣∣ q(hs)
)
≡

log

(
1 +

µ2
s · µ2

SCSs|X

σ2
s · µ2

SCSs|X + (µ2
s + σ2

s)σ
2
SCSs|X

)
, (17)

which is the same as formula (7) in the paper. Noting that
σ2
SCSs|X ≥ 0 appears in the denominator, and that log(.)

is a non-decreasing function, an upper-bound can be ob-
tained for (17) corresponding to σ2

SCSs|X = 0. Substituting
σ2
SCSs|X = 0 in (17) results in

KL
(
p(hs|X)

∣∣∣∣ q(hs)
)
≤ log

(
1 +

µ2
s

σ2
s

)
. (18)

Furthermore, taking expectation with respect to the input
X from both sides of (18) produces an upper-bound for the
compression term in IB (i.e., I(hs,X)) as

I(hs,X) ≤ EX

{
KL
(
p(hs|X)

∣∣∣∣ q(hs)
)}

≤ EX

{
log

(
1 +

µ2
s

σ2
s

)}
≈ 1

Nb
log

(
1 +

µ2
s

σ2
s

)
. (19)

Note that the RHS of (19) should be summed up for all SCS,
weighted with proper γs = γ

′ |SCSs| in Eq. (1), and opti-
mized along with the primary task loss that represents the
task fidelity term in IB. Hence, the overall training loss is

CE(y, ŷ) +
1

Nb
γ

′
S∑

s=1

|SCSs|
[
log

(
1 +

µ2
s

σ2
s

)]
, (20)

where |SCSs| is the number of coupled channels in SCSs

and γ
′

balances the primary task loss and the tractable reg-
ularization term (i.e., the compression-accuracy trade-off).

A.2. Transferability to Object Detection
In this subsection, we aim to investigate the transferabil-

ity of the pruned network configurations obtained via IT-
PCC to the task of object detection. To this end, we consider
the unpruned ResNet50 and the three pruned configurations
which were derived from it (in Section 4.3 of the main pa-
per) on the ImageNet classification task, namely, ITPCC-
A, ITPCC-B, and ITPCC-C. We utilize them as backbones
in Single Shot Detector (SSD) architectures [3], employing
both SSD300 and SSD512 variants. Following [3], we train
the whole network (including the backbone and the head)
on the combined VOC2007 [2] and VOC2012 train/val sets,
and evaluate it on the VOC2007 test set. We adopt the
head architecture from the original SSD paper and replace
the VGG16 backbone with the aforementioned networks.

Model mAP (%) FLOPs (G)

SSD300-VGG16 [4] 76.72 31.44
FasterRCNN-VGG16 [4] 70.10 91.23
RetinaNet-RN50 [4] 77.27 106.5
SSD300-RN50 (base) 77.79 11.1
SSD300-ITPCC-A (Ours) 77.86 6.85
SSD300-ITPCC-B (Ours) 77.06 5.08
SSD300-ITPCC-C (Ours) 75.08 3.38

SSD512-RN50-slim [4] 75.83 46.09
SSD512-RN50 (base) [4] 77.98 65.56
SSD512-RN50-HALP [4] 77.42 15.38
SSD512-RN50 (base) 80.9 46.24
SSD512-ITPCC-A (Ours) 81.05 31.42
SSD512-ITPCC-B (Ours) 80.45 25.6
SSD512-ITPCC-C (Ours) 78.82 20.15

Table 1. Object detection transferability results on PASCAL VOC

Our experimental results and those taken from [4] are pre-
sented in Table 1, comparing the mean Average Precision
(mAP) and the number of Giga Floating Point Operations
denoted as FLOPs (G). Notably, our models showcase sig-
nificant enhancements in both mAP and FLOPs when con-
trasted with other commonly used detectors. In compari-
son to the HALP model [4], which was pruned specifically
for object detection task, our transferred SSD512-ITPCC-C
strikes a relatively fair compression-mAP trade-off, achiev-
ing a 1.4% higher mAP with a moderate increase in FLOPs
(20.15 vs. 15.38). However, even with a smaller resolu-
tion, our SSD300-ITPCC-A still obtains a slightly higher
mAP than HALP (77.86 vs. 77.42) at a significantly lower
FLOPs (6.85 vs. 15.38). These findings demonstrate the
strong transferability capability of the pruned network con-
figurations uncovered with ITPCC to the task of object de-
tection. Such superior results pave the way for promising
future directions towards applying ITPCC to pruning for
other tasks such as object detection and image segmenta-
tion.

A.3. Further Results on High-sparsity Pruned Con-
figuration Analysis

In this section, further results on the high sparsity net-
work configuration for the ResNet110 network on both CI-
FAR10 and CIFAR100 datasets as well as for the ResNet56
network on the CIFAR10 dataset are presented in Fig-
ures (1a, 1b, 1c). For all of these three scenarios, a simi-
lar pruning pattern to that of Figure 4 in the main paper is
observed.



(a)

(b)

(c)

Figure 1. Pruned network configuration of (a) ResNet56 on CIFAR10 at 23.80× acceleration with 85.41% accuracy, (b) ResNet110 on
CIFAR10 at 23.28× acceleration with 89.45% accuracy, and (c) ResNet110 on CIFAR100 at 37.85× acceleration with 52.77% accuracy.

A.4. Experimental Settings

This section provides details about the settings used for
different experiments. The code used for the experiments
will be released upon the acceptance of the paper under Cre-
ative Commons (c) License (CC BY).
ImageNet Classification Experiments: We evaluate the
performance of our proposed method on the ResNet50 ar-
chitecture using the ImageNet dataset. Random flip and
crop data augmentation techniques are applied during train-
ing. To ensure fair comparison with other pruning algo-
rithms, we perform our experiments starting from the offi-
cial torch-vision base model (76.13% top-1 accuracy). In
the pruning phase, we prune this base model over 180
epochs, starting at an initial learning rate of 10−3 and gradu-
ally decreasing it to 10−4 using a cosine annealing learning
rate scheduler to optimize the non-variational network pa-
rameters. The variational parameters (µ and σ) maintain a
fixed learning rate of 3× 10−3. We employ Stochastic Gra-
dient Descent (SGD) optimizer with a batch size of 256, a
momentum of 0.9, and a weight decay of 1.5× 10−3 to op-
timize the weights. Following pruning, we fix the pruned

architecture by freezing the variational parameters. We
then fine-tune the non-variational parameters for 90 epochs,
starting with a learning rate of 10−3 and gradually reduce it
to 10−5 using the cosine annealing learning rate scheduler.
Other training hyper-parameters (e.g., batch size, weight de-
cay, etc.) remain the same as those of the pruning phase. All
experiments on ImageNet were performed on three Nvidia
V100 (16GB) GPUs.
CIFAR10/100 Classification Experiments: Experiments
for the CIFAR10 and CIFAR100 datasets are performed on
ResNet56, ResNet110, and MobileNetV2 networks, start-
ing from unpruned models with reported accuracies. Each
pruning experiment on CIFAR10/100 is repeated 5 times
with different random seeds, and we report mean and stan-
dard deviation of the results.

For ResNet56 and ResNet110 networks, the pruning
phase lasts for 250 epochs and follows a similar protocol
to the ImageNet experiments, except that the initial learn-
ing rate is 3 × 10−2 and gradually reduces to 10−4. The
fixed learning rate for the variational parameters is 2×10−3.
Once the pruning process is completed, we fine-tune the re-
maining architecture for 200 epochs. We start with an ini-



Layer setting
SSD300

MaxPool (3, 1, 1)
Conv2D 1 (1024, 3, 6, 6)
Conv2D 2 (1024, 1, 0, 1)

SSD512

MaxPool (3, 1, 1)
Conv2D 1 (1024, 3, 6, 2)
Conv2D 2 (1024, 3, 6, 2)

Table 2. Details on the layers added on top of the backbone for
SSD300 and SSD512 variants. For the MaxPool layers, the re-
ported values in parenthesis are kernel size, stride, and padding
values, respectively. As for the Conv2D layers, the reported val-
ues are the number of output channels, kernel size, padding, and
dilation values.

tial learning rate of 10−4 and gradually reduce it to 10−5.
A weight decay of 5 × 10−4 is applied for both the prun-
ing and fine-tuning phases. Other hyper-parameters remain
consistent with those used in the ImageNet experiments.

For the MobileNetV2 network, we follow a similar train-
ing strategy to those of the ResNet56/110 experiments ex-
cept that a smaller weight decay of 4× 10−5 is used in both
the pruning and finetuning phases. Additionally, in the fine-
tuning phase, we start with a higher learning rate of 10−3

and gradually reduce it to 10−5 during the course of 250
finetuning epochs, using the cosine annealing learning rate
scheduler.

In the ablation experiments, to ensure a fair and consis-
tent comparison, the experimental settings for scenarios (a)
and (b) are identical and align with those adopted for the CI-
FAR100 experiments. For scenario (c), however, we reini-
tialize the pruned architecture found in scenario (a) and con-
duct a training process lasting for 450 epochs. It starts with
an initial learning rate of 10−1 that gradually reduces to
10−5, using a cosine annealing learning rate scheduler. All
other training settings remain the same for this scenario. All
experiment on CIFAR10 and CIFAR100 datasets were per-
formed on a single Nvidia Titan V (12GB) GPU.
Object Detection Transferability Experiments: In our
investigations into object detection transferability, we as-
sess the performance of various backbone architectures, in-
cluding the full ResNet50 (using torch vision’s official pre-
trained model), and the pruned versions ITPCC-A, ITPCC-
B, and ITPCC-C obtained from it in Table 2 of the main
paper. We employ the same head as the original Single Shot
multibox Detector (SSD) paper [3], but replace the VGG16
backbone with the mentioned ones. To align the backbone’s
output with the head’s input, we streamlined the integration

process by removing the last fully connected and average
pooling layers of the backbone. Instead, we replace them
for a max pooling layer followed by two convolution layers
with ReLu activations in between. Details on these added
layers are presented in Table 2.

The mentioned backbones pretrained/pruned on Ima-
geNet classification, together with their randomly initial-
ized head, are trained on the union of VOC2007 and
VOC2012 train/val sets for the object detection task. This
training procedure lasts for 120 epochs, starting from a
learning rate of 10−3 that gradually decays to 10−5 using
the cosine annealing scheduler. We employ Stochastic Gra-
dient Descent (SGD) optimizer with a batch size of 32, a
momentum of 0.9, and a weight decay of 5 × 10−4 to op-
timize the weights. All other training settings remain the
same as the original SSD paper [3]. All transferability ex-
periments were performed on a single NVIDIA RTX A4000
(16GB) GPU.

A.5. Societal impacts

Our pruning algorithm could have several societal im-
pacts:

• Increased Accessibility of AI: By reducing the size
and computational demands of deep learning models,
this algorithm could make AI technology more acces-
sible to individuals and organizations with limited re-
sources. This could lead to a wider range of appli-
cations of AI in areas like healthcare, education, and
environmental monitoring.

• Reduced Energy Consumption: Smaller models re-
quire less power to run, which could contribute to a
reduction in the overall energy consumption of AI sys-
tems. This could have a positive impact on the envi-
ronment.

• Faster Deployment on Devices: Pruned models can
run faster on devices with limited processing power,
like smartphones and Internet of Things (IoT) devices.
This could enable the development of new AI-powered
applications on these devices.
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