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André Sacilotti1 Samuel Felipe dos Santos2 Nicu Sebe3 Jurandy Almeida2

1University of São Paulo 2Federal University of São Carlos 3University of Trento
andre.sacilotti@usp.br {samuel.felipe,jurandy.almeida}@ufscar.br niculae.sebe@unitn.it

A. Experimental Details
The adversarial training relies on the hyperparame-

ter λ to control the strength of the Gradient Reversal
Layer (GRL) on the adaptation head. Our DTAB module
relies on the hyperparameters Q and α, where the first con-
trols the queue size and the other controls the weight of the
IB loss [3] and, in the GRL from DTAB, we fixed the weight
λDTAB as 1 for every adaptation task. Also, we must de-
fine the batch size and the k sampling frames related to the
training schedule.

For the UCF → HMDB [1] benchmark, we used a batch
size of 32 and a sample of k = 53 frames. Due to its smaller
size, we used a queue size Q of 512. Also, we used the
IB loss of α = 0.001 and adversarial loss of λ = 1. In
the HMDB → UCF benchmark, the only change is in the
adversarial loss of λ = 0.5 to make the training more stable.

For the Kinetics → Gameplay [1] benchmark, we used
a batch size of 64 and a sample of k = 23 frames. In this
adaptation task, we reduced the queue size Q to 512, used
an IB loss of α = 0.001, and a minor adversarial loss of
λ = 0.05, making the training more stable.

In the Kinetics → NEC-Drone [2] benchmark, we used
a batch size of 64, a sample of k = 53 frames, a queue size
Q of 512, an IB loss of α = 0.025, and an adversarial loss
of λ = 0.5.

B. More Ablation Studies
This section reports the extra ablation studies conducted

with our TransferAttn framework.

B.1. Effect of the DTAB position

To study the impact of the position of the DTAB module,
we experimented by first changing all transformer blocks
to DTAB, then changing only the first and last ones, and
finally placing them in odd and even positions. The results
in Table 7 show that our DTAB works better when used
in the place of the last transformer block, where the patch
features are more fine-grained than the others.

Table 7. Ablation study on Kinetics → NEC-Drone integrating the
DTAB in different encoder positions.

DTAB Position Backbone K → N
All Blocks

STAM

36.0
First Only 38.2
Even Positions 54.0
Odd Positions 65.4
Last Only 74.8

B.2. Effect of the Fixed Classifier

One of the hypotheses we introduce in this paper is the
use of a classifier with fixed random weights. This approach
is motivated by the idea that fixing the classification bound-
aries forces the encoder Ge to learn a feature space that is
more generalizable across domains, avoiding the classifica-
tion head GC to overfit on the source domain data. To study
the impact of the fixed random classifier, we propose an ab-
lation study to evaluate both our baseline and TransferAttn
models with both learnable and fixed classifiers.

In Table 8, we present the accuracy results on the Kinet-
ics → NEC-Drone benchmark, using the STAM backbone.
As we can see, in both models, the use of a fixed random
classifier yields an improvement in the final result, demon-
strating that fixing the classification boundaries makes the
encoder Ge to learn more robust features for UDA.

Table 8. Ablation study on Kinetics → NEC-Drone using learned
and fixed classifier.

Method Classifier K → N

Baseline Learnable 41.7
Fixed 45.5

TransferAttn Learnable 69.2
Fixed 74.8



Table 9. Ablation study on Kinetics → NEC-Drone comparing how each class was impacted (class-wise accuracy).

Method Walking Running Jumping Drinking Throwing an Obj. Shaking Hands Hugging
Baseline 0.0 100.0 0.0 21.7 33.3 77.8 96.2
+IB 29.7 80.7 0.0 73.9 75.0 74.1 96.1
+MDTA 89.1 3.9 42.3 100.0 72.2 70.4 100.0

B.3. Impacts of Adaptation on each Action Class

To study the impact of our MDTA mechanism, we con-
ducted an experiment to analyze how the addition of our
new attention mechanism impacts each type of class. As
can be seen in Table 9, the baseline method achieved good
results in a small set of classes and performed poorly on
the rest. While the addition of IB improved recognition for
certain classes, the best results were obtained when MDTA
was combined with IB and the baseline method (last row).

From another perspective, we grouped the action classes
by type, such as Pose (e.g., Walking, Running, and Jump-
ing), Person-Object Interaction (e.g., Drinking and Throw-
ing an Object), and Person-Person Interaction (e.g., Shaking
Hands and Hugging), as shown in Table 10. Notably, the
groups most impacted were Person-Object Interaction and
Pose. Our main hypothesis is that MDTA’s ability to fo-
cus on semantically meaningful frames enables the model
to concentrate on frames containing more relevant informa-
tion for classification, such as object movements or changes
in pose.

Table 10. Ablation study on Kinetics → NEC-Drone comparing
how each type of action was impacted (class-wise accuracy).

Method Pose Person-Object Person-Person
Baseline 33.3 27.5 87.0
+IB 36.8 74.4 85.1
+MDTA 45.1 86.1 85.2

B.4. Domain Gap Limitations

The limitations of our approach were explored using the
Kinetics→Gameplay dataset, which represents an adapta-
tion from virtual data to real-world data. As shown in Ta-
ble 2, our approach improves the SOTA results, even when
applied on a combination of real and synthetic data.

Although we explored adaptation from synthetic to real
data, adaptation to first-person or egocentric videos was
not addressed. For future work, we plan to investigate the
use of TransferAttn on the Jester [5] and Epic-Kitchens [4]
datasets.
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