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In the supplementary materials, we evaluate our pro-
posed AL method on a large image classification dataset
(CIFAR-10). We also provide further details on the com-
parison baselines, dataset statistics, and the implementation
of our method.

1. Evaluations on CIFAR-10

In addition to the experiments on six real-world datasets
included in our paper, in Fig.1, we conduct experiments
on the CIFAR-10 dataset to show the effectiveness of our
approach on large datasets in the AL setting (10 sam-
ples/cycle). We observe that our approach outperforms all
other competitive baselines in almost all AL cycles, which
shows the scalability of our method.
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Figure 1. CoOp accuracy results over 6 AL cycles on the CIFAR-
10 dataset.

2. Other Prompt Tuning AL Curves

From Fig. 2 and Fig. 3, we observe that our approach
outperforms all other baselines in almost all AL cycles
using VPT and MaPLe prompt tuning approaches, which
shows the generalizability of our method regardless of the
prompt tuning approach used.

3. Additional Implementation Details

For VPT experiments, we use a pretrained vision trans-
former ViT-B16 [5] model as the CLIP’s backbone where
the feature dimension is set to 512. We initialize prompts
with ‘a photo of a {}’. The number of context vectors in
the vision branch is set to 2. We run all experiments for 50
epochs using the SGD optimizer [8] with an initial learning
rate of 0.0025, a momentum of 0.9, a weight decay of 0.005,
and a cosine annealing scheduler. The batch size is set to 4
for all experiments. For data augmentations, we perform
RandomResizedCrop, RandomFlip, and Normalization.

4. Explanation for N/A Results in Tables

Some of the compared AL baselines require a small ran-
domly initialized labeled set before the first AL cycle. For
these methods, we initially perform random sampling and
select 1% of the unlabeled data as the initial labeled data.
As a result, the performance of these methods is identical to
that of random sampling at a budget equal to 1%. We show
these duplicate results via ‘-’ in our tables.

5. Comparison baselines

We compare our method against a suite of state-of-the-
art AL approaches: 1) ALFA-Mix [11]. This method em-
ploys a mixup technique and slightly perturbs unlabeled
samples in the feature space. If the small added noise leads
to inconsistent model predictions, the unlabeled sample is
selected for annotation. 2) BADGE [1]. BADGE employs
a hybrid AL strategy that combines both diversity and un-
certainty criteria. The idea behind BADGE is that the mag-
nitude of the model’s gradient is a measure of uncertainty
since it shows the amount of change in the model’s weights
to correctly classify the sample. 3) GCNAL [3]. This ap-
proach identifies dissimilar unlabeled samples to labeled
ones using a Sequential Graph Convolution Network. 4)
CoreSet [12]. CoreSet selects diverse samples based on the
core-set concept. 5) Entropy [14]. It utilizes the model’s
entropy to choose informative samples. 6) Random. It
queries unlabeled data randomly.
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Figure 2. MaPLe accuracy results over 6 AL cycles. From left to right: Textures, Flowers102, and UCF101 datasets.

Figure 3. VPT accuracy results over 6 AL cycles. From left to right: Textures, Flowers102, and UCF101 datasets.

Table 1. Datasets details.

Dataset #Categories #Unlabeled data #Test data

Textures 47 2,820 1,692
Caltech-101 100 4,128 2,465

EuroSAT 10 13,500 8,100
FGVC-Aircraft 100 3,334 3,333

Flowers102 102 4,093 2,463
UCF101 101 7,639 3,783

6. Datasets

Following prompt tuning works [9, 15], we select 6 dif-
ferent image classification datasets for our experiments,
namely Describable Textures [4], Caltech-101 [2], Eu-
roSAT [6], FGVC-Aircraft [10], Flowers-102 [7], and UCF-
101 [13]. These datasets cover a range of specialized com-
puter vision tasks that are suitable for evaluating a large
pre-trained model like CLIP that has zero-shot capabilities.
More information about these datasets is shown in Table 1.
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