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1. Training of the ARD-VAE
The Algorithm 1 outlines the training of the ARD-VAE.

The proposed method uses data in the latent space, Dz, to
update the parameters of the prior distribution, p(z | Dz)
(that is not fixed, unlike the regular VAE [7, 12]). The data
Dz in the latent space is produced using the Algorithm 2
that takes in as input a subset of the training data, Xα.

Algorithm 1 : ARD-VAE training
Input: Training samples X , Number of epochs the Dz

should lag uDz , Scaling factor β
Output: Encoder and decoder parameters, ϕ and θ
Split X into training, X train, and validation data, X val

Choose a subset Xα at random from X train

Initialize SGD samples X sgd = X train −Xα

Initialize ϕ and θ
Initialize epoch index e← 0
for number of epochs do

if e mod uDz then
Choose a new subset of the training data Xα

Update SGD samples, X sgd = X train −Xα

Update Dz with the samples produced by the Algo-
rithm 2 using the update Xα

Update bL, using the latest Dz

end if
for number of minibatch updates do

Sample a minibatch from X sgd

Update ϕ and θ by optimizing the ARD-VAE objec-
tive function

end for
e← e+ 1
Shuffle X sgd

end for

Ablation Study on the Size of Xα : The size of the
Xα in Algorithm 1 can be treated as a hyperparameter of
the proposed method. Thus, we conduct an ablation study
on the size of the Xα. In this analysis, we study the ef-
fect of the number of samples in Xα on the performance of

Algorithm 2 Produce Dz using the training subset Xα

Input: Xα

Output: Dz

Initialize Dz ← ϕ.
for x

′ ∈ Xα do
µx′ ,σ2

x′ ← Eϕ(x
′
)

z
′ ← µx′ + ϵ⊙ σx′

Dz ← Dz ∪ z
′

end for

the ARD-VAE in terms of the number of relevant/active di-
mensions identified and FID score of the generated samples.
Different settings of | Xα | considered in this study are
| Xα |= {2K, 5K, 10K, 20K}. The ARD-VAE is trained
on the MNIST and CIFAR10 datasets with L = 32 and
L = 256, respectively. We have used the neural network ar-
chitecture in Tab. 4 and followed the optimization strategies
discussed in the section 2. We use the hyperparameter β as
reported in Tab. 6. Compared to other results reported in the
results section, the network parameters are initialized using
a single seed, as we did not observe much variation in the
performance of the ARD-VAE with different initializations.

From the results reported in Tab. 1, we observe negligible
variation in the number of relevant dimensions estimated by
the ARD-VAE with the size of Xα and there is almost no
variation in the FID scores of the generated samples for both
datasets. Thus, we conclude the performance of the ARD-
VAE is not affected by the number of samples in Xα. The
ARD-VAE is trained in an unsupervised framework having
access to a large amount of data, and it is good to have a
representative set that captures the variations in the dataset.
Thus, we choose | Xα |= 10K as a general setting for any
random dataset that uses the ARD-VAE.

Considering the size of the training set (50K) of the
MNIST and CIFAR10 datasets, | Xα |= 10K is a large
number. This motivated us to evaluate the performance of
the ARD-VAE with different settings of | Xα | on the large
ImageNet dataset containing ∼ 1.28 million training sam-
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| Xα |= 2K | Xα |= 5K | Xα |= 10K | Xα |= 20K
ACTIVE FID ↓ ACTIVE FID ↓ ACTIVE FID ↓ ACTIVE FID ↓

MNIST (L = 32) 13 21.83 12 22.04 13 22.13 13 24.12
CIFAR10 (L = 256) 116 85.15 114 85.65 112 85.99 112 86.83

Table 1. The number of ACTIVE dimensions and the FID scores of the generated samples for different sizes of the Xα in the ARD-VAE.

(a) MNIST (b) CelebA (c) CIFAR10

Figure 1. The minimum and maximum variances estimated by the ARD-VAE while training on the MNIST, CelebA and CIFAR10 datasets
for multiple latent dimensions. The maximum estimated variances are orders of magnitude higher than the minimum estimated variances.

| Xα | ACTIVE FID↓ PRECISION↑ RECALL↑ MSE↓
10K 152 120.53 0.56 0.48 0.005
20K 153 119.66 0.53 0.57 0.005

Table 2. Effect of the size of the | Xα | on the performance
of the ARD-VAE under different metrics for the large ImageNet
dataset. We observe the ARD-AVE is resilient to the size of the
| Xα | for a sufficiently large size, such as | Xα |= 10K. This
observation is consistent with the results on the MNSIT and CI-
FAR10 datasets in Tab. 1. Therefore, we demonstrate that the
configuration of the ARD-VAE used in relatively smaller datasets,
such as the MNIST and CIFAR10, seamlessly scales to the large
ImageNet dataset.

Dataset L (secs) 2L (secs) 4L (secs)

MNIST (L = 16) 0.36± 0.02 0.36± 0.01 0.36± 0.01
CIFAR10 (L = 128) 0.64± 0.02 0.64± 0.02 0.65± 0.02

Table 3. Time taken (in secs) in the computation of bL on a 12GB
NVIDIA TITAN V to get the updated σ̂2 using | Xα |= 10K
(refer to the Algorithm 1). The inference time is indifferent to the
size of the latent space, L. However, it increases with the com-
plexity of the neural network, such as for the CIFAR10 dataset.

ples. We train the ARD-VAE on the ImageNet dataset with
the configuration of | Xα |= {10K, 20K} and evaluate its
performance under several metrics, such as the relevant di-
mensions (ACTIVE), FID score of the generated samples,
precision-recall scores, and reconstruction loss (MSE). We
have used the neural network architecture in Tab. 4 and fol-
lowed the optimization strategies discussed in the section
2. From the results reported in Tab. 2, we observe that the

performance ARD seamlessly scales to the large ImageNet
dataset, and its performance is not affected with more sam-
ples in | Xα |. Therefore, we empirically demonstrate the
robustness of the setting, | Xα |= 10K, across multiple
datasets. We use | Xα |= 10K for other large datasets (rel-
ative to the MNIST and CIFAR10 datasets) studied in this
work, e.g., the CelebA (∼ 200K), DSprites (∼ 700K) and
3D Shapes (∼ 500K) datasets.

The parameters of the prior distribution, p(z | Dz),
are updated every epoch (indicated by uDz in the Algo-
rithm 1) using samples in the latent space. In Tab. 3, we
report the time taken (in secs) on a 12GB NVIDIA TITAN
V to estimate the parameters of the prior distribution using
| Xα |= 10K for the MNIST and CIFAR10 datasets. We
observe the inference time is indifferent to the size of the
latent space for both the datasets. The inference time in-
creases with the complexity of the encoder-decoder archi-
tecture used for different datasets, such as the neural net-
work used for the CIFAR10 dataset with more model pa-
rameters than the MNIST takes more time to estimate the
parameters of the posterior distribution. However, as the
parameters are updated only once in an epoch, the infer-
ence time taken is negligible relative to the training dura-
tion. The time taken to estimate the distribution parameters
for the ImageNet dataset is similar to the CIFAR10, as we
use the same neural network architecture. Thus, the results
in Tab. 3, demonstrates the feasibility of training the ARD-
VAE on large datasets and bigger latent spaces. Moreover,
we could successfully train the ARD-VAE on the ImageNet
dataset on a single 12GB NVIDIA TITAN V using the ar-
chitecture mentioned in Tab. 4 and parameters in Tab. 6.



Figure 2. Latent traversal of the DSprites data set [10] in the range [−3σ, 3σ] using the relevant axes discovered by the ARD-VAE. The
latent factors are mentioned in the left column. All latent factors are represented by independent latent axes with slight entanglement of
Shape and Position Y. The MIG score for this model is 0.35

Figure 3. Latent traversal of the 3D Shapes data set [1] in the range [−3σ, 3σ] using the relevant axes discovered by the ARD-VAE. The
latent factors are mentioned in the left column. All latent factors are represented by independent latent axes with almost no overlap between
them. The MIG score for this model is 0.84

The prior distribution of the ARD-VAE is not fixed, un-
like the regular VAE [7, 12]. Thus, we track the minimum
and maximum estimated variances for the MNIST, CelebA
and CIFAR10 datasets across the training epochs in Fig. 1.
The minimum estimated variance is significantly less than
the maximum variance across different experimental setup
and the maximum estimated variance stabilizes after cer-
tain number of epochs, depending on the dataset. For all the
datasets, the estimated variances (both the minimum and
maximum) are similar for different sizes of the latent space.
These figures illustrate the stability in the training of the
ARD-VAE across multiple datasets.

The ARD-VAE outperforms the competing methods un-
der different disentanglement metrics on multiple datasets,
as reported in Tab. 1 in the main paper. The information
encoded by the relevant latent dimensions identified by the
ARD-VAE when trained on the DSprites and 3D Shapes
are shown in Fig. 2 and Fig. 3, respectively. In both images,

Fig. 2 and Fig. 3, we traverse each relevant latent axis in the
range [−3σ, 3σ] to interpret the variability explained by the
axes. From these images, we conclude that the ARD-VAE
identifies all factors of variation present in both the DSprites
and 3D Shapes datasets. In Fig. 4, we traverse all the latent
axes, L = 10, used in the training of the ARD-AVE on the
3D Shapes dataset, sorted by the relevance score proposed
in the paper. We observe that the decoder produces no vari-
ability in output in response to the deviations along a few
latent axes with lower relevance score, highlighted within
the red bounding box. This visualization demonstrates the
presence of irrelevant or superfluous latent dimensions that
the ARD-VAE correctly identifies.

2. Experimental Settings
In the neural network architectures reported in Tab. 4,

Tab. 5, CONVn and TRANSCONVn define convolution and



Figure 4. Latent traversal of the 3D Shapes data set [1] in the range [−3σ, 3σ] on all the latent axes, L = 10, used in the training of
the ARD-AVE on the 3D Shapes dataset, sorted by the relevance score proposed in the paper. The latent factors are mentioned in the left
column for the relevant axes (total 6), and additional axes (total 4) are highlighted within the red bounding box that shows no variability in
output in response to deviations along these axes. This elucidates our hypothesis about the behavior of irrelevant latent axes.

MNIST CelebA CIFAR10 & ImageNet
Encoder: x ∈ R32×32×1 x ∈ R64×64×3 x ∈ R32×32×3

CONV64 → BN → RELU CONV64 → BN → RELU CONV128 → BN → RELU
CONV128 → BN → RELU CONV128 → BN → RELU CONV256 → BN → RELU
CONV256 → BN → RELU CONV256 → BN → RELU CONV512 → BN → RELU
CONV512 → BN → RELU CONV512 → BN → RELU CONV1024 → BN → RELU

FLATTEN2×2×512 → FCk×16 → NONE FLATTEN4×4×512 → FCk×64 → NONE FLATTEN2×2×1024 → FCk×128 → NONE

Decoder: z ∈ R16 → FC2×2×512 z ∈ R64 → FC8×8×512 z ∈ R128 → FC8×8×1024

TRANSCONV256 → BN → RELU TRANSCONV256 → BN → RELU TRANSCONV512 → BN → RELU
TRANSCONV128 → BN → RELU TRANSCONV128 → BN → RELU TRANSCONV256 → BN → RELU
TRANSCONV64 → BN → RELU TRANSCONV64 → BN → RELU TRANSCONV3 → SIGMOID

TRANSCONV1 → SIGMOID TRANSCONV3 → TANH

Table 4. Encoder and decoder architectures used by all the methods for the MNIST, CelebA and CIFAR10 datasets [4, 14].

transpose convolution operation, respectively, with n filters
in the output. We have used 4× 4 filters for all the datasets.
The transpose convolution filters use a stride size of 2 ex-
cept for the last layer of the decoders used in the CelebA,
CIFAR10 and ImageNet datasets. We represent the fully
connected layers as FCk×n with k × n nodes, where k = 1
for all the methods, except the VAE and β-TCVAE that use
k = 2. Activation functions used in the networks are ReLU
(RELU), Leaky ReLU (LRELU), sigmoid (SIGMOID), and
hyperbolic tangent (TANH). Input is in the range [0, 1]
for all the datasets except CelebA, for which the input is
mapped to the range [−1, 1]. The encoder-decoder architec-
tures of the MaskAAE [11] and GECO-L0-ARM-VAE [2]

are obtained from the respective papers.
We use the Adam optimizer in all experiments (learn-

ing rate set to 5e − 04) with a learning rate scheduler (Re-
duceLROnPlateau) that reduces the learning rate by 0.5 if
the validation loss does not improve for a maximum of
10 epochs except the MaskAAE and GECO-L0-ARM-VAE
due to their sensitivity in optimization of the trainable pa-
rameters. Moreover, the MaskAAE uses a specific training
recipe. All the methods are trained for 50, 50, 100, and 50
epochs for the MNIST, CelebA, CIFAR10, and ImageNet
datasets, respectively, with a few exceptions for the MNIST
dataset. The VAE, β-TCVAE, GECO-L0-ARM-VAE, and
MaskAEE are trained for 100 epochs for the MNIST dataset



DSprites 3D Shapes
Encoder: x ∈ R64×64×1 x ∈ R64×64×3

CONV32 → RELU CONV32 → RELU
CONV32 → RELU CONV32 → RELU
CONV64 → RELU CONV64 → RELU
CONV64 → RELU CONV64 → RELU

FLATTEN4×4×64 → FCk×6 → NONE FLATTEN4×4×64 → FCk×6 → NONE

Decoder: z ∈ R6 → FC4×4×64 z ∈ R6 → FC4×4×64

TRANSCONV64 → RELU TRANSCONV64 → RELU
TRANSCONV32 → RELU TRANSCONV32 → RELU
TRANSCONV32 → RELU TRANSCONV32 → RELU
TRANSCONV1 → NONE TRANSCONV3 → SIGMOID

Table 5. Encoder and decoder architectures used by all the methods for the DSprites and 3D Shapes datasets [6, 9].

Method Parameters MNIST CelebA CIFAR10 ImageNet DSprites 3D Shapes
β-TCVAE β: 2 2 2 2 5 5
DIP-VAE-I (λod, λd): NA NA NA NA (10, 100) (10, 100)
DIP-VAE-II (λod, λd): NA NA NA NA (10, 10) (10, 10)

WAE RECONS-SCALAR: 0.05 0.05 0.05 0.05 NA NA
WAE β: 10 100 100 100 NA NA
RAE β: 1e− 04 1e− 04 1e− 03 1e− 03 1e− 04 1e− 04
RAE DEC-L2-REG: 1e− 07 1e− 07 1e− 06 1e− 06 1e− 06 1e− 06

GECO-L0-ARM-VAE τ : 10.0 300.0 25.0 15.0 NA NA
ARD-VAE β: 0.5 1.0 0.05 0.05 5.0 5.0

Table 6. Optimization settings for different methods.

DSprites 3D Shapes
INITIAL ACTIVE GT INITIAL ACTIVE GT

10 5.80± 0.40 6 10 6.40± 0.49 6
15 6.00± 0.00 6 15 6.40± 0.49 6
20 5.80± 0.40 6 20 6.40± 0.49 6
30 5.80± 0.40 6 30 6.20± 0.40 6

Table 7. The number of the active dimensions (ACTIVE) estimated
by the ARD-VAE matches closely with the ground truth (GT).

as it improved the model performance. In the disentangle-
ment analysis, all the methods are trained for 35 and 60
epochs [9] for the DSprites and 3D Shapes datasets, respec-
tively.

We use a batch size of 100 for training all the meth-
ods, except the MaskAAE, which is trained using a batch
size of 64 (to maintain consistency with their implementa-
tion). All the hyperparameters of the MaskAAE are set ac-
cording to the GitHub repo in https://github.com/
arnabkmondal/MaskAAE for all the datasets. We have
tuned the hyperparameters of the MaskAAE over a series
(i.e., dozens) of experiments, and no better results could be
obtained. For the GECO-L0-ARM-VAE, we have used the
code shared by the authors [2]. Only the target reconstruc-
tion loss (τ ) in GECO-L0-ARM-VAE was the hyperparam-
eter in our analysis. For the DIP-VAE-I and DIP-VAE-II,
we have followed the suggested hyperparameters in the pa-

per [8]. For the β-TCVAE, we have empirically determined
the strength of the regularization loss for different data sets
as we could not find them in the literature. We set β = 2
for the MNIST, CelebA, and CIFAR10 data sets as higher β
resulted in poor reconstruction. Table 6 reports the specific
hyperparameters for different methods. The uDz in the al-
gorithm 1 is set to 1 and | Xα |= 10K for all the datasets
studied in this work.

3. Results
In this section, we report the results on the CelebA

dataset for all the competing methods, the reconstruction
loss on different datasets, an ablation study on the effect of
the relevance score estimation method on the performance
of the ARD-VAE, and demonstrate the use of the relevance
score estimation method in the determination of the number
of relevant/active dimensions for other competing methods
studied in this work.

Results on the synthetic dataset : We know the num-
ber of latent factors used in the generation of the synthetic
datasets, the DSprites [10] and 3D Shapes [1], which is 6
for both datasets. Thus, the number of known latent factors
in these datasets serves as the ground truth for the num-
ber of relevant (or ACTIVE) dimensions estimated by the
ARD-VAE. In this experiment, we set the initial size of the
latent space, L = 10, 15, 20, 30, and train the ARD-VAE

https://github.com/arnabkmondal/MaskAAE
https://github.com/arnabkmondal/MaskAAE


METHOD
DSPRITES 3D SHAPES

FACTORVAE METRIC ↑ MIG ↑ ACTIVE FACTORVAE METRIC ↑ MIG ↑ ACTIVE

β-TCVAE (L = 10) 81.15 0.23 10 84.29 0.48 10
ARD-VAE (L = 10) 66.63 0.26 6 91.40 0.84 6

Table 8. Disentanglement scores of competing methods, where we initialize the model parameters of the different methods with the same
seed for multiple datasets. In this experiment, we train the β-TCVAE (a baseline method comparable to the ARD-VAE in Tab. 1 in the main
paper) with the latent dimensions L = 10 and compare its performance with the ARD-VAE under the same setting. The ACTIVE indicates
the number of the latent dimensions used by different methods to compute the metric scores (higher is better). We train the ARD-VAE
with L = 10 and find the number of relevant dimensions as 6 (ACTIVE). The best score is in bold. The ARD-VAE mostly outperforms
the β-TCVAE (similar to Tab. 1 in the main paper), even with L = 10.

CelebA (L = 64) ImageNet (L = 256)
ACTIVE FID↓ PRECISION↑ RECALL↑ ACTIVE FID↓ PRECISION↑ RECALL↑

VAE 64 49.89± 0.57 0.79± 0.03 0.75± 0.03 256 180.44± 0.69 0.12± 0.01 0.31± 0.04
β-TCVAE 64 50.14± 0.78 0.78± 0.02 0.70± 0.05 256 226.27± 0.48 0.04± 0.01 0.25± 0.01

RAE 64 48.81± 1.02 0.81± 0.02 0.77± 0.04 256 226.70± 30.14 0.08± 0.05 0.11± 0.05
WAE 64 72.01± 2.26 0.64± 0.05 0.75± 0.02 256 278.32± 5.83 0.03± 0.00 0.04± 0.08

GECO-L0-ARM-VAE 35.60± 3.07 294.97± 28.45 0.00± 0.00 0.00± 0.00 124.00± 9.34 177.40± 40.21 0.27± 0.09 0.26± 0.10
MaskAAE 5.4± 0.80 333.40± 10.91 0.01± 0.02 0.00± 0.00 0.0± 0.00* — — —
ARD-VAE 53.40± 0.49 50.73± 0.29 0.85± 0.02 0.73± 0.02 152.0± 1.1 121.21± 1.16 0.54± 0.02 0.51± 0.03

* The MaskAAE collapsed all the dimensions for the ImageNet dataset after 30 epochs. Thus, we skip the evaluation of the MaskAAE for the ImageNet dataset.

Table 9. The FID and precision-recall scores of the generated samples, along with the number of latent dimensions (ACTIVE) used by the
competing methods to compute different metric scores for the CelebA and ImageNet datasets. The best score under a metric is in bold and
the second best score is underlined. The ARD-VAE outperforms other methods by far on the ImageNet dataset and is comparable to the
competing methods on the CelebA dataset.

to estimate the number of relevant axes for both datasets.
From the results reported in Tab. 7, we observe the number
of active dimensions estimated by the ARD-VAE closely
matches the ground truth for different initial bottleneck di-
mensions.

In the disentanglement analysis of the synthetic datasets
(discussed in the main paper), we leverage the information
of the number of the known latent factors of the DSprites
[10] and Shapes3D [1] dataset to set the size of the latent
space (L = 6) for the baseline methods. However, we
train the ARD-VAE with some additional latent dimensions
(L = 10), such that it identifies the true generative factors
of the datasets and discards the unnecessary axes from the
set of relevant axes. For a fair comparison, we train the β-
TCVAE, a baseline method comparable to the ARD-VAE in
Tab. 1 in the main paper, with the latent dimensions L = 10
and compare its performance with the ARD-VAE under the
same setting. The result of this ablation study is reported
in Tab. 8. Even under this setting, the performance of the
ARD-AVE is better than the β-TCVAE under all the sce-
narios but the FactorVAE metric on the DSprites dataset.

Results on the CelebA and ImageNet dataset : In
this analysis, we report the FID [5] and precision-recall
[13] scores of the competing methods in Tab. 9. For the
CelebA dataset, the performance of the competing methods
are comparable with small variations. The ARD-VAE could
achieve the performance of the RAE with∼54 latent dimen-
sions, which is 10 dimensions less. Similar to the MNIST

and CIFAR10 dataset, we could not train the GECO-L0-
ARM-VAE and MaskAAE on the CelebA dataset using the
neural network architecture reported in Tab. 4.

We evaluate the scalability and robustness of the ARD-
AVE, and we train the ARD-VAE on the ImageNet dataset
[3], i.e., a complex and larger dataset. In our analysis, we
train the ARD-VAE along with the baseline methods on
the ImageNet dataset with the image resolution of 32× 32.
The comparison of the proposed method with the compet-
ing methods under several evaluation metrics is reported
in Tab. 9. The ARD-AVE compares favorably to all other
methods by a large margin and prunes more than 100 latent
dimensions to model the complex dataset. The MaskAAE
collapsed all the latent dimensions on the ImageNet dataset
when trained using the neural network architecture reported
in Tab. 4. The number of relevant dimensions estimated by
the ARD-VAE are consistent even when trained with differ-
ent sizes of the latent space, such as L = 512, 1024 (refer
to Tab. 11). We could successfully train the ARD-VAE on
the ImageNet dataset on a single 12GB NVIDIA TITAN
V using the architecture mentioned in Tab. 4 and optimiza-
tion parameters in Tab. 6. The training for 50 epochs with
| Xα |= 10K took around∼ 17 hours. Therefore, the train-
ing of the ARD-VAE on the ImageNet dataset demonstrates
the stability, robustness, and effectiveness of the proposed
method in modeling a large dataset with a lot of variability.

Reconstruction loss of the competing methods: In
Tab. 10, we report the mean-square error (MSE) loss per



Method MNIST (L = 16) ↓ CelebA (L = 64) ↓ CIFAR10 (L = 128) ↓ ImageNet (L = 256) ↓
VAE 0.012± 0.000 0.021± 0.000 0.016± 0.000 0.018± 0.000

β-TCVAE 0.018± 0.000 0.024± 0.000 0.021± 0.000 0.022± 0.000
RAE 0.003± 0.000 0.020± 0.000 0.006± 0.000 0.003± 0.000
WAE 0.004± 0.000 0.020± 0.000 0.007± 0.000 0.007± 0.000

GECO-L0-ARM-VAE 0.004± 0.001 0.029± 0.002 0.011± 0.001 0.006± 0.000
MaskAAE 0.091± 0.091 0.093± 0.093 0.199± 0.199 —*

ARD-VAE 0.008± 0.000 0.021± 0.000 0.006± 0.000 0.005± 0.000

* The MaskAAE collapsed all the dimensions for the CIFAR10 dataset after 20 epochs. Thus, we skip the evaluation of the
MaskAAE for the CIFAR10 dataset.

Table 10. MSE per pixel of the competing methods (averaged over 5 different runs) on the benchmark datasets (lower is better). The best
score is in bold, and the second best score is underlined. The number of ACTIVE dimensions of the GECO-L0-ARM-VAE, MaskAAE and
ARD-VAE (refer to Tab. 13) are used for computing the MSE. However, for the remaining methods we use all the initial (L) dimensions.

METHOD
MNIST (L = 16) CIFAR10 (L = 128) ImageNet (L = 256)

ACTIVE ARD-VAE-ALL ARD-VAE ACTIVE ARD-VAE-ALL ARD-VAE ACTIVE ARD-VAE-ALL ARD-VAE
L 12.8± 0.40 21.94± 0.67 22.24± 0.57 105.8± 1.33 85.05± 0.84 87.56± 1.21 152.0± 1.1 107.9± 1.08 121.21± 1.16
2L 12.6± 0.49 21.97± 0.23 22.30± 0.33 116.4± 3.72 83.73± 2.76 86.50± 1.43 163.0± 1.41 107.02± 1.34 123.34± 1.11
4L 12.4± 0.49 22.30± 0.48 22.31± 0.58 117.8± 15.04 84.92± 0.92 87.88± 1.80 161.0± 2.28 107.78± 0.64 123.30± 0.51

Table 11. In this experiment, we assess the impact of the pruning latent dimensions in the ARD-VAE by comparing the FID scores over
multiple datasets. We compare the FID scores (of the generated samples) of the proposed ARD-VAE with its variant using all the latent
axes, referred to herein as ARD-VAE-ALL, to produce the metric scores. The number of relevant latent dimensions the ARD-VAE uses are
reported as ACTIVE. The ARD-VAE produces consistent estimates of the ACTIVE dimensions and FID scores for different values of L.

pixel on the MNIST, CelebA, CIFAR10, and ImageNet
datasets. The number of ACTIVE dimensions of the GECO-
L0-ARM-VAE, MaskAAE and ARD-VAE (refer to Tab. 13
and Tab. 9) are used for computing the MSE. However, for
the remaining methods we use all the latent (L) dimen-
sions. The MaskAAE collapsed all the latent dimensions on
the ImageNet dataset, and,thus, we could not compute the
MSE. Though the GECO-L0-ARM-VAE has a comparable
MSE loss, it failed to model the data distribution. taset. The
choice of β for the ARD-VAE produces comparable MSE,
except the MNIST dataset. This is due to the lack of ex-
tensive hyperparameter tuning in the ARD-VAE. However,
that did not impact the performance of the ARD-VAE sig-
nificantly.

Ablation study on the relevance score estimation: In
this work, we proposed a method to compute the relevancy
of latent axes and used the same to estimate the number of
active dimensions that are sufficient to model a data dis-
tribution. However, it is important to evaluate the perfor-
mance of the ARD-VAE using all the latent axes. To this
end, we compute the FID scores of the ARD-VAE on the
MNIST, CIFAR10, and the ImageNet datasets trained on
latent spaces of different sizes for an individual dataset,
shown in Tab. 11. The ARD-VAE that uses all the la-
tent axes is dubbed as the ARD-VAE-ALL, i.e., it does not
prunes unnecessary/superfluous dimensions. The ACTIVE
in Tab. 11 indicates the number of relevant dimensions used
by the ARD-VAE for the evaluation of the FID scores under

different settings. This analysis serves a proxy to the loss of
information due to the pruning of irrelevant dimensions.

We observe the FID scores computed using the relevant
axes (ACTIVE) are marginally higher than the scores com-
puted using all the axes (ALL). However, we get rid of
many redundant latent axes using the relevance score esti-
mation technique. For e.g., the FID score for the CIFAR10
(slightly higher) with an initial dimension of 4L = 512 is
produced using only ∼118 latent axes. Similarly, for the
ImageNet dataset, the ARD-VAE prunes ∼ 863 irrelevant
dimensions (estimated using the proposed relevance score)
when trained with an initial dimension of 4L = 1024 with-
out a significant change in the FID score. This experiment
illustrates that the modeling of the data distributions by
the ARD-VAE using only the relevant latent axes preserves
most of the information compared to the ARD-VAE-ALL
using all latent axes, as indicated by a small degradation in
the FID scores.

To better understand the loss of information due to the
pruning of latent dimensions in the ARD-VAE, we compare
the ARD-VAE with the best performing baseline method
determined in terms of the FID score. The best baseline
method considers all the latent dimensions used in training
the model. Comparing the FID scores reported in Tab. 12,
we observe slightly higher FID scores for the ARD-VAE on
the MNIST and CelebA dataset, indicating some loss of in-
formation relative to the baseline. However, the ARD-VAE
outperforms the best baseline on the challenging CIFAR10



METHOD
MNIST (L = 16) CelebA (L = 64) CIFAR10 (L = 128) ImageNet (L = 256)

ACTIVE FID↓ ACTIVE FID↓ ACTIVE FID↓ ACTIVE FID ↓
Best method among
the baseline methods

16 18.79± 0.31 64 48.81± 1.02 128 94.34± 1.58 124.00± 9.34 177.40± 40.21

ARD-VAE 12.80± 0.40 22.24± 0.57 53.40± 0.49 50.73± 0.29 105.80± 1.33 87.56± 1.21 152.0± 1.10 121.21± 1.16

Table 12. In this analysis, we assess the information loss due to the pruning of latent dimensions in the ARD-VAE by comparing its FID
scores (of the generated samples) with the best method among the baseline methods (studied in this work) over multiple datasets. The
number of latent dimensions used by competing methods are reported as ACTIVE. The best FID score is in bold.

MNIST (L = 16) CelebA (L = 64) CIFAR10 (L = 128)
ACTIVE FID↓ ACTIVE FID↓ ACTIVE FID ↓

VAE 10.20± 0.40 29.33± 0.41 55.20± 0.40 50.79± 0.64 26.40± 0.49 155.13± 1.45
β-TCVAE 7.40± 0.49 51.35± 0.95 51.40± 0.49 51.61± 0.76 16.20± 0.40 186.03± 1.82

RAE 16.00± 0.00 18.85± 0.43 63.00± 0.00 49.06± 1.16 125.00± 0.00 92.66± 1.61
WAE 16.00± 0.00 24.78± 0.77 63.00± 0.00 61.18± 1.60 127.00± 0.00 136.79± 1.35

GECO-L0-ARM-VAE 10.00± 1.10 304.75± 64.29 35.60± 3.07 294.97± 28.45 68.00± 2.97 320.75± 45.09
MaskAAE 9.80± 1.60 144.92± 16.80 5.4± 0.80 333.40± 10.91 3.80± 0.40 298.30± 8.44
ARD-VAE 12.80± 0.40 22.24± 0.57 53.40± 0.49 50.73± 0.29 105.80± 1.33 87.56± 1.21

Table 13. The FID scores of the generated samples along with the number of (ACTIVE) latent dimensions used by the competing methods.
The best FID score is in bold and the second best is underlined. The ACTIVE dimensions change for the VAE, β-TCVAE, RAE and WAE.

and ImageNet datasets. Therefore, using extensive com-
parisons, we demonstrate the robustness and generalization
capability of the ARD-VAE compared to the regular VAE
and its variants.

Relevant axes for the VAE using the Jacobian: In this
experiment we estimate the importance of the latent axes of
a trained VAE using 1.

wσ̂ =

D∑
k=1

1

N

N∑
i=1

∥Ji∥2, (1)

where J =

[
∂x̂

∂µ1
· · · ∂x̂

∂µL

]
∈ RD×L is the Jacobian matrix.

To get a reliable estimate of the weight vector wσ̂ using 1,
we compute the Jacobian for multiple data samples, which
is typically the size of a minibatch (100) in this work.

This estimate is used to determine the relevant axes for
the VAE, β-TCVAE, RAE, and WAE and the selected axes
are used for model evaluations as shown in Table 13. The
relevant dimensions of the VAE and β-TCVAE are less than
the initial dimension L for the MNIST and CelebA dataset
with comparable estimates of the FID scores. However,
similar to the GECO-L0-ARM-VAE and MaskAAE, ma-
jority of the dimensions collapses for the complex CIFAR
dataset. This experiment demonstrates the robustness of the
proposed ARD-VAE across different evaluation scenarios.
There is no change in the number of active latent dimen-
sions from L for the RAE and WAE as both methods match
aggregate posterior distributions, unlike VAEs.

Size of the latent space for modeling a new dataset:
We know, the size of the latent space of the VAE and its
variants for a dataset and a given autoencoder architecture

Method L 2L 4L

RAE (L = 128) 104.90 116.94 121.50
ARD-VAE (L = 128) 85.25 84.55 84.60

Table 14. The FID scores of the RAE (second best method on the
CIFAR10 dataset) and ARD-VAE on the CIFAR10 dataset with
samples generated using all the latent dimensions. The FID scores
of the RAE increase with the increase in the size of the latent
space. Whereas, the FID scores of the ARD-VAE is consistent.

is determined using cross-validation on the reconstruction
loss. Therefore, we have to retrain the DLVM multiple
times on a new dataset with additional hyperparameter tun-
ing to determine the number of latent dimensions, as the
complexity of the dataset is unknown to us. This is an unre-
alistic and tedious approach. In contrast, the ARD-VAE can
start training with a reasonable estimate of β ∈ [0.05, 0.5]
(refer to Tab. 6 for the real datasets) and sufficiently large
latent space to learn meaningful representations and model
the data distribution.

In this experiment, we demonstrate the impact of an in-
correctly chosen latent dimension, i.e., significantly bigger,
on the performance of the RAE [4] that produces compa-
rable results to the ARD-VAE under different evaluation
scenarios studied in this work. From the results reported
in Tab. 14, we observe that the performance of the RAE is
strongly affected by the choice of the initial size of the la-
tent space. In contrast, the ARD-VAE is not sensitive to the
initial size of the latent space and produces consistent re-
sults with β = 0.05. The results in Tab. 14 illustrate the
necessity of methods, such as the ARD-VAE, that can auto-
matically identify the relevant latent dimensions required to



BOTTLENECK SIZE
CIFAR10 (L = 128) ImageNet (L = 256)

INITIAL ACTIVE
PRUNED AXES FID↓ INITIAL ACTIVE

PRUNED AXES FID↓
= INITIAL−ACTIVE = INITIAL−ACTIVE

L/2 64 60.40± 0.49 3.60 104.03± 1.33 128 101.33± 0.47 26.67 129.63± 1.26
L 128 105.80± 1.33 22.20 87.56± 1.21 256 152.00± 1.10 104.00 121.21± 1.16

Table 15. In this result, we address the issue when the initial size of latent space L is smaller than the optimum size identified by the
ARD-VAE. In this analysis, we study the FID scores of the generated samples and the number of Active dimensions identified with the
reduced size of the latent space for the complex CIFAR10 and ImageNet datasets. The ARD-VAE preserves most of the latent dimensions
for the reduced size of the latent space, i.e., L/2, relative to the bigger latent space, L, which shows the effectiveness of the proposed
method. As expected, the number of ACTIVE dimensions is less under the setting of L/2, subsequently increasing the FID scores.

model the distribution of a real dataset.
In another experimental setting, we adopt a conserva-

tive approach and train the ARD-VAE with a reduced num-
ber of latent dimensions on the CIAFR10 and ImageNet
datasets than the optimum dimensions determined by the
ARD-VAE. For example, we train the ARD-VAE on the CI-
FAR10 dataset in a latent space of size L/2 = 64 when the
optimum size determined determined by the ARD-VAE is
∼ 106. The motivation of this experiment is to evaluate
the impact on the metric scores produced and the number of
relevant dimensions identified by the ARD-VAE under such
settings. We keep the hyperparameter unchanged when us-
ing the reduced size of the latent space, such as L/2. From
the results reported in the Tab. 15, we observe that the ARD-
VAE prunes less dimensions when trained on a smaller la-
tent space and as expected, the FID scores increase. How-
ever, the impact on the metric scores is not significant.
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