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Figure 1. An illustration of shift equivariance, non-invariance, and
invariance. Invariant models map shifted, non-shifted inputs to
identical outputs, while equivariant models mirror the input shift
in outputs.

1. Appendix

In this appendix, we define standard and circular shifts
of images with examples and distinguish between shift in-
variance, equivariance, and non-invariance. We also discuss
how polyphase decomposition operation in TIPS compares
to previous works on signal propagation within CNNs for
visual recognition. We further discuss computational anal-
ysis and experimental setup for MSB - shift invariance cor-
relation study, image classification benchmarks, semantic
segmentation benchmarks. Finally, we illustrate the com-
putational overhead in TIPS and discuss how it compares to
existing pooling operators.

1.1. Shift Equivariance, Invariance, and non-
Invariance

Figure 1 depicts three scenarios where an input x un-
dergoes a transformation g before being fed into a model
f to generate a prediction ŷ = f(g(x)) = g′(f(x)): shift
equivariance, shift non-invariance, and shift invariance. If
g′ = g, then f is g-equivariant and if g′ = I then f is
g-invariant. Shift-invariance is desirable for image classi-
fication to ensure that categorical outputs are invariant to
pixel shift, and shift-equivariance is desirable for semantic
segmentation and object detection to ensure that pixel-shift

in the image results in equivalent shift in corresponding seg-
mentation masks and bounding boxes.

1.2. Standard and Circular Shifts of Images

There are two types of pixel levels shifts that can be per-
formed on images: standard shift and circular shift. Given
an image of height h and width w, we can perform either
type of shifts by an amount (x, y) where x ∈ {0, .., h},
y ∈ {0, .., w}. Standard shift is the process of shifting
images to a (x, y) direction which renders blank pixels at
shifted positions. Circular shift also shifts images in the
(x, y) direction, except the shifted pixels that move beyond
the image boundary, are wrapped about the opposite ends
of the image to fill in the empty pixels. Therefore, circular
shift is a lossless transformation while standard shift is not.
Figure 2 and 3 show examples of standard and circular shift
(by varying amounts) applied to an image taken from Ima-
geNet test set and depict how standard shift renders blank
pixels while circular shift do not.

1.3. Comparison of Polyphase Decomposition op-
eration in the TIPS layer with previous work
in signal propagation within CNNs for image
recognition

Within TIPS layers, we use polyphase decomposition
which is comparable to dilated convolution (13) and dilated
attention (6) where the stride and dilation rates are identical
(Fig 2 in manuscript). Usage of strided convolution in the
above convolution operations can also be used for spatial
downsampling, however strided convolutions are still shift
invariant (14). The slicing operation in polyphase decom-
position is also identical to that of parallel grid pooling (10),
focus layer in YOLOv5 (4). However, we learn to sample
from these polyphase decompositions in the channel dimen-
sion while (4; 10) stack these decompositions in the chan-
nel space and then uses group convolution to downsample
across the channel dimension.
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Figure 2. Standard shift of an 224× 224 image from ImageNet test set is shown with varying amount of shifts. Here, standard shift (0, 0)
denotes the original image with no shifts. It is also observed that, as the amount of standard shift increases, there occurs more information
(pixel) loss.

Figure 3. Circular shift of an 224 × 224 image from ImageNet test set is shown with varying amount of shifts. Here, circular shift (0, 0)
denotes the original image with no shifts.

1.4. Comparison of TIPS with existing Polyphase
Sampling Pooling

While TIPS, APS, and LPS use polyphase decomposi-
tion for spatial downsampling, they differ in how the pooled

features are sampled from the decomposed polyphase com-
ponents.

• APS simply samples the polyphase component that con-
tains the maximum energy using ℓp norm.

• LPS learns to sample from these polyphase components



Unshifted Standard Shift Circular Shift
Method Acc. ↑ Consistency ↑ Fidelity ↑ Consistency ↑ Fidelity ↑
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MaxPool 92.96±0.08 82.13±0.57 76.18±0.07 83.61±0.12 77.72±0.05

APS 94.68±0.11 91.34±0.04 86.48±0.13 100.00±0.00 94.68±0.11

LPS 94.71±0.02 92.41±0.03 87.52±0.11 99.48±0.11 94.22±0.05

TIPS 95.63±0.15 95.02±0.09 90.87±1.08 100.00±0.00 95.63±0.15

BlurPool (LPF-5) 93.77±0.03 88.18±0.17 82.69±1.08 93.49±0.13 87.67±0.03

APS (LPF-5) 94.07±0.13 92.51±0.06 87.03±0.20 100.00±0.00 94.07±0.13

LPS (LPF-5) 95.62±0.07 94.10±0.07 89.99±0.19 100.00±0.00 95.62±0.07

TIPS (LPF-5) 96.42±0.16 95.50±0.13 92.08±0.19 100.00±0.00 96.42±0.16

V
iT ViT-B/16 (I21k) 96.88±0.13 81.45±0.04 78.91±0.15 78.39±0.12 75.94±0.12

ViT-L/16 (I21k) 97.00±0.03 81.84±0.11 79.38±0.08 78.06±0.18 75.72±0.17

Swin-B (I21k) 97.49±0.05 82.85±0.14 80.77±0.09 78.05±0.02 76.10±0.08

(a) Food-101

Unshifted Standard Shift Circular Shift
Method Acc. ↑ Consistency ↑ Fidelity ↑ Consistency ↑ Fidelity ↑
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MaxPool 93.48±0.15 85.63±0.11 80.05±0.17 89.38±0.17 83.55±0.12

APS 94.68±0.03 92.47±0.05 87.55±1.09 100.00±0.00 94.68±0.03

LPS 95.31±0.08 93.63±0.17 89.24±0.11 100.00±0.00 95.31±0.08

TIPS 97.18±0.06 95.78±0.03 93.08±0.16 100.00±0.00 97.18±0.06

BlurPool (LPF-5) 92.71±0.08 90.32±0.13 83.74±0.05 94.07±0.13 87.21±0.08

APS (LPF-5) 94.71±0.11 93.00±0.08 88.09±0.14 100.00±0.00 94.71±0.11

LPS (LPF-5) 96.28±0.05 94.33±0.06 90.82±0.09 100.00±0.00 96.28±0.05

TIPS (LPF-5) 97.62±0.11 96.51±0.14 94.21±0.14 100.00±0.00 97.62±0.11

V
iT ViT-B/16 (I21k) 99.33±0.05 88.47±0.04 87.88±0.08 82.24±0.03 81.69±0.06

ViT-L/16 (I21k) 99.59±0.03 87.25±0.09 86.89±0.18 82.39±0.13 82.05±0.03

Swin-B (I21k) 99.68±0.02 87.06±0.16 80.16±0.07 83.57±0.11 83.30±0.05

(b) Oxford-102

Table 1. Image classification performance on Food-101 and Oxford-102 datasets averaged over five trials.

Kvasir - U-Net CVC-ClinicDB - U-Net
Unshifted Standard Shift Circular Shift Unshifted Standard Shift Circular Shift

Method Anti-Alias mIOU ↑ Consistency ↑ Fidelity ↑ Consistency ↑ Fidelity ↑ mIOU ↑ Consistency ↑ Fidelity ↑ Consistency ↑ Fidelity ↑
MaxPool - 75.60 92.84 70.19 97.91 74.02 73.81 90.24 66.61 95.50 70.50
Blurpool LPF-3 78.39 94.63 74.18 98.30 77.06 76.32 93.87 71.64 96.36 73.54
DDAC LPF-3 79.24 95.17 75.41 98.49 78.04 77.89 92.17 71.80 97.73 76.12
APS LPF-3 81.97 96.32 78.95 100.00 81.97 79.31 95.63 75.84 100.00 79.31
LPS LPF-3 82.38 97.86 80.62 100.00 82.38 78.59 96.21 75.61 100.00 78.59
TIPS LPF-3 86.10 98.09 84.46 100.00 86.10 80.05 97.89 78.36 100.00 80.05

Table 2. Semantic segmentation performance on Kvasir and CVC-ClinicDB datasets.

Figure 4. Qualitative comparison of segmentation masks predicted on original and shifted images. Images from Cityscapes, Pascal VOC
are standard-shifted by (43,-17), (-38,0) respectively. Regions where TIPS achieve improvements (i.e. consistent segmentation quality)
under linear shifts are highlighted with circles.

using a shared convolution layer and gumble softmax.
• In TIPS, the shared small convolution layer differs in de-

sign (Figure 2 in manuscript) from LPS. In TIPS lay-
ers, we use convolution kernels, Global Average Pooling
(GAP) layer and softmax activation that learns mixing co-
efficients (eqn 2 in manuscript) to sample polyphase com-
ponents avoiding the sensitivity to gumble softmax tem-
perature.

1.5. More Results on Image Classification and Se-
mantic Segmentation

Table 1 contains results from image classification exper-
iments on Food-101 and Oxford-102 datasets. Table 2 con-

tains quantitative results from semantic segmentation exper-
iments on Kvasir and CVC-ClinicDB datasets while Fig-
ure 4 contains qualitative results from semantic segmenta-
tion experiments on Pascal VOC and Cityscapes datasets.

1.6. Experimental Setup for MSB - Shift Invariance
Correlation Study

Table 3 shows the list of CNN architectures (including
Mobile Net (2)), datasets and pooling methods that we use
to obtain a total of 576 configurations for the MSB-shift in-
variance correlation study. In our study, we train each com-
bination of architecture and dataset on 9 pooling methods:
Global Average Pooling before classification with no spatial



Image Classification Experiments Semantic Segmentation Experiments

Model # Layers Dataset Model # Layers Dataset

MobileNet {2, 3, 4, 5} CIFAR-10 DeepLabV3+ (ResNet-18) {2, 3, 4, 5} PASCAL VOC 2012
ResNet-18 {2, 3, 4, 5} CIFAR-100 DeepLabV3+ (ResNet-101) {3, 4, 5.6} Cityscapes
ResNet-34 {2, 3, 4, 5} Food-101 U-Net (ResNet-18) {2, 3, 4, 5} Kvasir
ResNet-101 {2, 3, 4, 5} Oxford-102 U-Net (ResNet-34) {2, 3, 4, 5} CVC-ClinicDB

Table 3. List of CNN architectures and datasets, tested on each pooling method for correlation analysis between MSB and Shift Invariance.

CIFAR-10 CIFAR-100 Food-101 Oxford-102

Model h× w b s N h× w b s N h× w b s N h× w b s N

MobileNet 32×32 64 60 220 32×32 64 60 220 200×200 128 60 220 200×200 128 60 220
ResNet-18 32×32 64 50 250 32×32 64 50 250 224×224 64 50 250 224×224 64 50 250
ResNet-34 32×32 64 50 250 32×32 64 50 250 224×224 64 50 250 224×224 64 50 250
ResNet-101 32×32 64 180 480 32×32 64 180 480 224×224 64 180 480 224×224 64 180 480

Table 4. Image size (h×w), batch size (b), step size(s) for updating learning rate, and number of epochs (N ) reported for each CNN model
and image classification dataset combination for the MSB – Shift Invariance correlation analysis experiment.

downsampling of convolution features, TIPS (ϵ = 0.4, α =
0.35), LPS (τ = 0.01), APS (p = 2), APS (p → ∞), LPS
(τ → ∞), BlurPool (LPF-5), Average Pool (2 × 2), and
MaxPool (2 × 2). Furthermore, in each of the aforemen-
tioned settings, we use different number of pooling layers as
shown in Table 3. While training with Global Average Pool-
ing, we use 4 different kernel sizes (2×2, 3×3, 4×4, 5×5)
in the first convolution layer with same padding to create 4
variants since varying the number of pooling layers is not
possible in this setting barring that we downsample only
once (downsampling the very last convolution features with
Global Average Pooling before classification/segmentation
layer). Furthermore, to consider a wide variety of CNN
design strategies in our correlation study, we use ResNets
which has architectural choices such as residual / skip con-
nections with varying depth and MobileNet which contains
group (depthwise and separable) convolutions. Addition-
ally, to make our correlation study more robust we consider
more diverse configurations such as number of pooling lay-
ers, different datasets with varying magnitude of image res-
olution, number of classes etc. Moreover, we train and test
all of these 576 configurations which is computationally ex-
pensive while using other CNN architectures such as VGG-
16 (9), ConvNext (7).

In Table 4, Table 5 we include training details such as
image size, batch size, step size, number of training epochs
for all model - dataset combinations used in the MSB - shift
invariance correlation framework for both image classifi-
cation and semantic segmentation. As discussed in Sec-
tion 4 (manuscript), using Global Average Pooling with no
spatial downsampling of the convolution features leads to
increased computation with larger spatial features. In Ta-
ble 6, we summarize a detailed analysis on how Global Av-

erage Pooling increases computational complexity in com-
parison to baseline MaxPool. The reported CUDA time is in
nanoseconds (ns), CUDA memory is in Mega Bytes (MB),
GFLOPs is billions of floating point operations per second.
In (Figure 4, manuscript), we observe that Global Average
Pooling improves shift invariance and reduces MSB, and
Table 6 reveals that this performance gain comes at a sig-
nificantly higher computational cost which is impractical.
However, with TIPS we achieve comparable shift invariance
and MSB by introducing marginal computational complex-
ity in comparison to Global Average Pooling.

1.7. Experimental Setup for Image Classification,
Object Detection, and Semantic Segmentation

We benchmark the performance of TIPS and prior work
on five image classification datasets which are described in
Table 7. We benchmark the performance of TIPS and prior
work on four semantic segmentation datasets which are de-
scribed in Table 8. Table 7, 8 contains further training de-
tails on all the reported datasets such as batch size, step
size, number of training epochs, image/crop size, number
of classes and number of images in the dataset.

The values of ϵ = 0.4, α = 0.35 were obtained using
hyperparameter search on CIFAR-10. Note that we only
run hyperparameter (ϵ, α) tuning on CIFAR-10 (a small
dataset) and then use the same ϵ, α for other image classifi-
cation, object detection, and semantic segmentation bench-
marks without any hyperparameter search on other tasks or
datasets. We chose ϵ = 0.4 because introducing Lundo af-
ter 40% of the training duration yields the best performance
(see Fig 8 in manuscript).



Pascal VOC 2012 Cityscapes Kvasir CVC-ClinicDB

Model h× w b s N h× w b s N h× w b s N h× w b s N

DeepLabV3+ (ResNet-18) 200×300 12 120 450 200×200 12 120 450 200×200 12 60 450 200×300 8 45 450
DeepLabV3+ (ResNet-101) 200×300 8 120 380 200×200 12 120 380 200×200 12 60 380 200×300 8 45 380
U-Net (ResNet-18) 200×300 12 120 180 200×200 16 120 180 200×200 16 60 180 200×300 12 45 180
U-Net (ResNet-34) 200×300 12 120 150 200×200 12 120 150 200×200 12 60 150 200×300 8 45 150

Table 5. Image size (h×w), batch size (b), step size(s) for updating learning rate, and number of epochs (N ) reported for each CNN model
and semantic segmentation dataset combination for the MSB – Shift Invariance correlation analysis experiment.

Architecture Pooling CUDA Time ↓ CUDA Memory ↓ GFLOPs ↓
MobileNet MaxPool 0.635 58.122 2.270

TIPS 1.045 101.214 3.005
GAP 66.609 6390.284 639.259

ResNet-18 MaxPool 1.135 21.860 4.017
TIPS 3.525 292.844 41.937
GAP 72.460 1957.691 1124.032

ResNet-34 MaxPool 1.954 31.904 8.128
TIPS 5.623 334.754 71.532
GAP 141.075 3451.912 2250.287

ResNet-101 MaxPool 4.921 131.035 31.197
TIPS 12.204 816.791 146.596
GAP 534.514 21144.011 8508.809

(a) Image Classification

Architecture Pooling CUDA Time ↓ CUDA Memory ↓ GFLOPs ↓
DeepLabV3+(ResNet-18) MaxPool 1.33 25.216 9.570

TIPS 3.728 380.146 91.146
GAP 121.029 2453.834 1926.592

DeepLabV3+(ResNet-101) MaxPool 7.52 144.737 51.447
TIPS 18.274 911.845 246.947
GAP 741.568 21671.086 11521.953

U-Net(ResNet-18) MaxPool 2.754 78.574 23.567
TIPS 8.675 1113.227 235.797
GAP 143.402 3137.765 2700.095

U-Net(ResNet-34) MaxPool 3.179 88.707 27.678
TIPS 9.045 957.965 246.352
GAP 202.312 4631.986 3826.350

(b) Semantic Segmentation

Table 6. GPU resources (CUDA time, memory, GFLOPs) allocated to convolution operations in CNNs while using different pooling
operators for various CNN architectures. We observe that, performing Global Average Pooling (GAP) on the final convolution feature
with no prior downsampling drastically increases GPU resources in comparison to baseline MaxPool. TIPS require additional convolution
layers (Figure 2, manuscript), since it is a learnable pooling operator. Compared to MaxPool, the overhead in GPU resources with TIPS is
remarkably smaller than it is for Global Average Pooling.

1.8. Computational Overhead in TIPS

Table 9 shows the percentage of additional parameters
required to use TIPS on image classification and segmenta-
tion CNN models with different pooling methods and CNN
architectures, for RGB images of size 224 × 224 and a
batch-size of 64. TIPS introduces marginal computational
overhead while still being computationally cheaper than ex-
isting pooling operators for shift invariance, i.e. DDAC.
Moreover, in Table 10 we show the number of trainable pa-
rameters with different pooling operators for all the image
classification, semantic segmentation CNN models. While
TIPS requires higher number of trainable parameters than
LPS, it is still much less than DDAC.

1.9. Effect of training on LFM

In Figure 5, we train ResNet-101 on Tiny ImageNet with
TIPS and LFM and compare it with baselines LPS, APS
and MaxPool in terms of standard fidelity and MSB. To fur-
ther inspect the effect of training TIPS with LFM , we train
with three different setting of TIPS: (1) TIPS with LFM : to
discourages both skewed and uniform τ , (2) TIPS with only
the first term in LFM : to discourages skewed τ only, and
(3) TIPS with only second term in LFM : to discourages
uniform τ only. We observe that training TIPS with both
terms from LFM yields the maximum gain in shift fidelity

Figure 5. The effect of LFM on TIPS is visualized by plotting
standard shift fidelity versus MSB for models trained on Tiny Im-
ageNet. Training TIPS with LFM yields the maximum standard
shift fidelity and minimum MSB.

and decreases MSB the most. TIPS with LFM also outper-
forms other pooling methods: LPS, APS and MaxPool in
terms of standard shift fidelity and MSB.

1.10. Studying Shift Invariance on CNN architec-
tures beyond ResNets

Tables 11, 12, contain results from DenseNet (3) and Ef-
ficientNet (11) on CIFAR-10 with different pooling meth-
ods including TIPS. We use LPF-5 for antialiasing and hy-
perparameters used in DenseNet and EfficientNet respec-



Image Classification Experiments
Dataset Model Batch Size Step Size Epochs Image Size # Classes # Training Samples # Validation Samples
CIFAR-10 ResNet-18 64 50 250 32×32 10 50,000 10,000
Food-101 ResNet-50 64 25 80 224×224 101 75,750 25,250
Oxford-102 ResNet-50 64 20 70 224×224 102 2,060 6,129
Tiny ImageNet ResNet-101 64 180 480 64×64 200 100,000 10,000
ImageNet ResNet-101 64 30 90 224×224 1000 1,281,167 50,000

Table 7. Training details, dataset statistics for all five datasets in our image classification experiments. Training details include batch size,
step size for updating learning rate, number of training epochs, image size and dataset statistics include number of classes, training samples,
validation samples.

Semantic Segmentation Experiments

Dataset Model Batch Size Step Size Epochs Image Size # Classes # Training Samples # Validation Samples

PASCAL VOC 2012 DeepLabV3+(ResNet-18) 12 120 450 200×300 20 1,464 1,456
Cityscapes DeepLabV3+(ResNet-101) 12 120 380 200×200 19 2,975 500
Kvasir UNet(ResNet-18) 12 60 180 200×200 2 850 150
CVC-ClinicDB UNet(ResNet-34) 8 45 150 200×300 2 521 91

Table 8. Training details, dataset statistics for all four datasets in our semantic segmentation experiments. Training details include batch
size, step size for updating learning rate, number of training epochs, image size and dataset statistics include number of classes, training
samples, validation samples.

tively. We observe improved shift invariance with TIPS in-
dependent of CNN architecture.

1.11. Studying Effect of Normalization Layers on
Shift Invariance

Using normalization layers in CNNs positively impact
visual recognition performance (1; 5; 8; 12). However, the
goal of this study is to carefully analyze (and isolate) the im-
pact of pooling operators on shift invariance. While layer
normalization is not the focus of this work, we have ex-
perimented on it’s different alternatives and show results in
Tables 13, 14. Tables 13 (batch size 32), 14 (batch size
256) contain results on CIFAR-10 with a ResNet-18 back-
bone with TIPS and MaxPool pooling with Batch Norm (5),
Layer Norm (1), Group Norm (12), and Kernel Norm (8).
We observe that usage of normalization layers leads to
mixed results – this points to normalization not being a ma-
jor factor for shift invariance. However, Tables 13, 14 reveal
that using TIPS instead of baseline MaxPool improves shift
invariance regardless of layer normalization choice.



Method ResNet-18 ResNet-34 ResNet-50 ResNet-101

BlurPool 0.00 0.00 0.00 0.00
DDAC 7.92 10.53 9.27 4.30
APS 0.00 0.00 0.00 0.00
LPS 1.03 2.24 1.93 1.05
TIPS 5.51 4.56 2.17 3.19

(a) Image Classification

Method DeepLabV3+(A) DeepLabV3+(B) UNet

BlurPool 0.00 0.00 0.00
DDAC 12.00 4.83 12.83
APS 0.00 0.00 0.00
LPS 4.40 3.25 4.79
TIPS 7.24 4.04 5.76

(b) Semantic Segmentation

Table 9. Percentage of additional parameters required by different pooling operators in comparison to MaxPool on each CNN architecture
for classification and semantic segmentation. We observe that, while TIPS require more parameters than LPS, DDAC causes the maximum
increase in trainable parameters w.r.t. baseline MaxPool.

Method ResNet-18 ResNet-34 ResNet-50 ResNet-101

MaxPool 11.884 21.282 23.521 42.520
BlurPool 11.884 21.282 23.521 42.520
DDAC 12.825 23.524 25.701 44.349
APS 11.884 21.282 23.521 42.520
LPS 12.006 21.759 23.975 42.966
TIPS 12.539 22.253 24.031 43.876

(a) Image Classification

Method DeepLabV3+(A) DeepLabV3+(B) UNet

MaxPool 20.131 58.630 7.762
BlurPool 20.131 58.630 7.762
DDAC 22.547 61.459 8.758
APS 20.131 58.630 7.762
LPS 21.017 60.536 8.134
TIPS 21.589 60.999 8.209

(b) Semantic Segmentation

Table 10. Number of trainable parameters in Million for various pooling methods reported for: ResNet-18, ResNet-34, ResNet-50,
ResNet-101 backbones (image classification), DeepLabV3+ (A: ResNet-18, B: ResNet-101) and UNet (semantic segmentation). Number
of trainable parameters are computed assuming an RGB input image of size 224 × 224.

Standard Shift Circular Shift
Method Accuracy ↑ Consistency ↑ Fidelity ↑ Consistency ↑ Fidelity ↑
MaxPool 96.37 90.02 86.72 92.41 89.05
BlurPool 96.74 92.57 89.51 94.07 90.96
APS 97.27 93.31 90.82 100.00 97.27
LPS 97.12 94.36 91.62 100.00 97.12
TIPS 97.43 96.71 94.19 100.00 97.43

Table 11. Image classification performance on CIFAR-10 with
DenseNet-BC (k=24) (3).

Standard Shift Circular Shift
Method Accuracy ↑ Consistency ↑ Fidelity ↑ Consistency ↑ Fidelity ↑
MaxPool 98.90 89.14 88.13 92.19 91.22
BlurPool 98.90 91.06 90.07 92.37 91.39
APS 98.53 92.30 90.95 100.00 98.53
LPS 98.93 93.47 92.44 100.00 98.93
TIPS 98.93 93.67 92.67 100.00 98.93

Table 12. Image classification performance on CIFAR-10 with
EfficientNet-B7 (11).

Standard Shift Circular Shift
Normalization Accuracy ↑ Consistency ↑ Fidelity ↑ Consistency ↑ Fidelity ↑
Batch Norm (5) 96.02/91.43 98.61/87.43 94.69/79.94 100.00/90.18 96.02/82.45
Layer Norm (1) 93.43/92.25 97.34/89.37 90.95/89.77 100.00/90.61 93.43/83.60
Group Norm (12) 94.79/89.04 95.82/82.37 90.84/73.34 100.00/93.59 94.79/83.33
Kernel Norm (8) 96.18/95.72 98.07/86.12 94.31/82.43 100.00/90.81 96.18/86.95

Table 13. Inspecting the influence of different layer normalization
strategies on ResNet-18 for CIFAR-10 with different pooling op-
erators. All results are reported as TIPS/MaxPool with batch size
of 32.

Standard Shift Circular Shift
Normalization Accuracy ↑ Consistency ↑ Fidelity ↑ Consistency ↑ Fidelity ↑
Batch Norm (5) 94.71/90.87 97.29/88.29 92.15/80.21 100.00/84.91 94.71/76.89
Layer Norm (1) 94.67/91.19 96.43/82.13 91.29/74.91 100.00/89.02 94.67/81.24
Group Norm (12) 94.14/94.02 96.80/84.82 91.14/79.38 100.00/92.30 94.14/86.69
Kernel Norm (8) 94.58/94.58 97.44/86.36 92.16/81.69 100.00/93.47 94.58/88.43

Table 14. Inspecting the influence of different layer normalization
strategies on ResNet-18 for CIFAR-10 with different pooling op-
erators. All results are reported as TIPS/MaxPool with batch size
of 256.
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