
Supplementary: Learning Semantic Part-Based Graph Structure for 3D Point
Cloud Domain Generalization

Figure 1. Input Point Clouds (1st Column), Result of directly applying FPS to inputs (we divide them into 8 parts as PDG to show
qualitative comparison) (2nd Column), Outputs of our proposed Unsupervised Part Decomposition (UPD) module (3rd Column), Output
of Graph Structure Induction (GSI) module without fine-grained partitions (FPS parts) (4th Column) and Output of rich Graph Structure
Induction (GSI) module with fine-grained partitions (FPS parts) (5th Column). Different colours in the 2nd, 3rd, 4th, and 5th columns
signify different parts of the same point cloud. Grey lines in the 4th and 5th columns signify connections between parts created by the GSI
module; vertices are shown in red.

A. Qualitative Analysis
This section presents additional qualitative results of the

outputs of our UPD and GSI modules, illustrating their util-
ity. Figure 1 displays the outputs of both modules.

B. Automatic vs Fixed Number of Clusters:

Settings M-S M-S* Avg.
UPD: Fixed 4 Clusters 84.49 55.13 69.81
UPD: Fixed 6 Clusters 84.21 54.51 69.36
UPD: Fixed 8 Clusters 85.04 55.35 70.20
UPD: Fixed 10 Clusters 86.19 58.74 72.47
UPD: Fixed 12 Clusters 86.39 58.91 72.65

UPD: Automatic Clusters 86.45 59.49 72.97

Table 1. Study the impact of automatic clustering vs Fixed number
of clusters (M as source)

We conduct experiments to understand the efficiency of

our optimization framework for cluster number in UPD by
comparing it with viz. fixed clustering applied to the UPD
module. Table 1 shows the effectiveness of automatic clus-
tering based on object geometry in contrast to fixed numbers
of clusters. In our experiments, the fixed clusters ranged
from 4 to 12, with 2 clusters increased per experiment. Af-
ter completing part segmentation by the UPD module, we
divide these parts into smaller sub-parts using FPS, as dis-
cussed in Section 3.2 of the main paper, hence effectively
increasing the number of sub-parts beyond the number of
clusters. Here we choose a subset of our original experi-
ments where we understand the effect of automatic cluster-
ing in both the Simulated to Simulated scenario (M → S)
and the Simulated to Real scenario (M → S∗).
Choosing the optimal number of parts: Table 1 shows
that increasing the number of clusters helps improve the
performance closer to our achieved State-of-the-art results.
However, since we set 2 to 6 clusters in the UPD module,
it takes a significantly higher number of rigid/fixed clusters

1



to even approach the achieved results, leading to more com-
puting and memory consumption.

We also observe that increasing the clusters rigidly posi-
tively affects the results up to a specific limit. The main rea-
son these experiments cannot achieve or surpass the state-
of-the-art is that some objects require a lesser number of
clusters to segment them into different parts meaningfully,
and fixing a significantly higher number of clusters leads to
the problem of over-segmentation (Note that, after the parts
are segmented, they undergo FPS to be further divided into
smaller sub-parts).

Hence, the hierarchical geometric structure is lost, and
the GSI module can no longer understand the graph struc-
ture created from these over-segmented parts. Therefore,
through these experiments, we know the importance of op-
timally choosing the correct number of clusters for differ-
ent objects, even within the same class. We also observe
that some objects, even within the same class, can be rela-
tively simple or complex based on their geometric appear-
ance. UPD module correctly handles individual objects
within each class and optimally divides them into differ-
ent numbers of clusters, leading to better part segmentation
and, consequently, better graph creation.

C. Rerun on GraspNet-PC 10 Dataset:
We conduct three different runs of our proposed method

on the GraspNet-PC 10 dataset to understand the statisti-
cal significance of the performance. In Table 2, we provide
the result of the reruns. All the reruns use the same experi-
mental configurations mentioned in the main paper’s imple-
mentation details section. We can observe from the three
runs that the results are statistically significant and consis-
tent across different runs.

Experiment Syn→Kin Syn→RS Kin→RS RS→Kin
Run - 1 96.92 87.46 87.04 71.14
Run - 2 96.09 86.05 87.71 71.23
Run - 3 96.28 87.46 87.95 70.97
Average 96.43 86.99 87.57 71.12

Table 2. Rerun of proposed method on GraspNetPC-1o dataset.
Classification accuracy (%) on the GraspNet-10. Sys.: Synthetic
domain, Kin.: Kinect domain, RS.: RealSense domain.

D. Discussion on performance in S*→M and
RS→Kin:

ScanNet (S*) and RealSense (RS) are real-world datasets
captured using LiDAR sensors. S* is especially popular in
DA and DG communities for their difficulties (viz. incom-
plete scans, hard-to-recognize objects). Hence, the parts
and graphs created from S* and RS are very different. Still,
the results obtained by our proposed method show its capa-
bilities in handling complex source data. For these reasons,

these experimental settings fail to surpass the current State-
of-the-Art but achieve comparable performance (Refer to
Table 2 in main paper).


	. Qualitative Analysis
	. Automatic vs Fixed Number of Clusters:
	. Rerun on GraspNet-PC 10 Dataset:
	. Discussion on performance in S*M and RSKin:

