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Supplementary Material

A. Further Pre-training Details
Optimization We utilize AdamW [3] optimizer with co-
sine learning decay [2]. Starting from learning rate of 10−5,
we increase it to 10−3 in the first 30 epochs and decay it to
10−6. The batch size for pretraining is set to 512, and β for
Smooth L1 loss is set to 2, similar to Point2Vec [6]. The tar-
get encoder and context encoder initially have identical pa-
rameters. The context encoder’s parameters are updated via
backpropagation, while the target encoders’ parameters are
updated using the exponential moving average of the con-
text encoder parameters, that is θ ←− τθ + (1 − τ)θ where
τ ∈ [0, 1] denotes the decay rate. We gradually increase the
decay rate of the exponential moving average from 0.995 to
1.0 during pretraining.

Masking and Ordering To determine the sequence of
patch embeddings, we utilize the iterative ordering of as-
sociated center points, as previously mentioned. We chose
the starting point in this sequence with the lowest sum of
its coordinates. This method allows us to start the sequence
from a point on the outer edge of the object rather than from
a point within the object’s interior. This consistency in se-
lecting the initial point is experimentally shown to deliver
a slightly better learned representation than taking the first
available index.

For masking, we define a range of ratios with both up-
per and lower limits similar to I-JEPA [1]. To start with,
we clarify that the term “block” refers to a sequence of
patch embeddings and their corresponding encoded embed-
dings that are contiguous. Because of the sequencing pro-
cess applied before the target and context selection, most
contiguous patch embeddings and encoded embeddings are
also spatially contiguous. For the target, we randomly select
4 blocks of encoded embeddings processed by transformer
blocks from within the 0.15 to 0.2 range. We then remove
the corresponding patch embeddings of encoded embedding
vectors that have already been chosen as targets for further
selection. Following this, we choose a block of patch em-
beddings that is within the range of 0.4 to 0.75 out of avail-
able patch embeddings that are not concealed. Because
some of the patch embeddings are not available for con-
text selection, we note that context block usually consists
of multiple sets of patch embeddings that are spatially con-
tiguous. The selection of targets is completed on a per-batch
basis, and we track the indices of these targets to ensure
that the corresponding patch embeddings of these selected
encoded embeddings are concealed in the context selection.

The context is then selected using the available indices of
patch embeddings also on a per-batch basis.

Targets Context OA

Ratio Freq. Ratio Modelnet40 Linear

(0.1, 0.2) 4 (0.85, 1.0) 93.0
(0.15, 0.2) 4 (0.85, 1.0) 93.3
(0.2, 0.25) 4 (0.85, 1.0) 93.2
(0.25, 0.3) 4 (0.85, 1.0) 92.4
(0.3, 0.35) 4 (0.85, 1.0) 90.5
(0.35, 0.4) 4 (0.85, 1.0) 84.6

Table 1. Ratio Range for Target. The ratio of encoded embed-
ding vectors selected for each target.

B. Further Ablation
Ratio of Targets. We change the ratio of the selected em-
bedding vectors for the target selection while keeping the
number of target blocks and the ratio of context patch em-
bedding fixed. As shown in Tab. 1, the performance in-
creases when you increase the ratio to a certain point. How-
ever, beyond this point, further increasing the ratio results in
decreased performance. This implies that Point-JEPA does
not require a large size for the target blocks and benefits
from a sufficient amount of available patch embeddings for
context selection.

Targets Context OA

Ratio Freq. Ratio Modelnet40 Linear

(0.15, 0.2) 4 (0.85, 1.0) 93.1
(0.15, 0.2) 4 (0.75, 1.0) 92.8
(0.15, 0.2) 4 (0.65, 1.0) 93.4
(0.15, 0.2) 4 (0.45, 1.0) 93.6
(0.15, 0.2) 4 (0.6, 0.75) 93.4
(0.15, 0.2) 4 (0.5, 0.75) 93.1
(0.15, 0.2) 4 (0.4, 0.75) 93.7

Table 2. Ratio Range for Context. The ratio of patch embeddings
selected for context encoding.

Ratio of Context. In this study, we change the ratio
of patch embeddings selected for context encoding while
keeping the number of targets and the ratio range for targets
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(a) Row-normalized confusion matrix on ModelNet40
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(b) Column-normalized confusion matrix on ModelNet40
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(c) Row-normalized confusion matrix on ScanObjNN
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(d) Column-normalized confusion matrix on ScanObjNN

Figure 1. Confusion matrices illustrating model performance on ModelNet40 and another dataset, highlighting class-specific accuracies
and challenges with similar categories.

fixed. As shown in Table 2, having a relatively large dif-
ference between the lower and upper bound of the ratio can
improve performance. In other words, Point-JEPA learns a
better representation when the number of selected context
patch embeddings varies more between training iterations.
Additionally, when the upper bound of the ratio is some-
what constrained, we see increased performance.

Predictor Depth We also study the effect of the predic-
tor’s depth on the learned representation. To this end, we
vary the predictor depth and observe its effect on the lin-
ear evaluation accuracy. As shown in Table 3, Point-JEPA
benefits from a deeper predictor.

Class confusion on ModelNet40 and ScanObjNN To
assess our model’s performance on the ModelNet40 [5] and
ScanObjNN [4] datasets, we present two types of visualiza-
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Predictor Depth Modelnet40 Linear (OA)

2 92.5
3 92.8
4 93.2
5 93.4
6 93.7

Table 3. Predictor Depth. Predictor depth and its effect on
learned representation.

tions for each dataset. The first is a row-normalized confu-
sion matrix, which illustrates the model’s sensitivity, indi-
cating how well the model identifies each actual class. The
second is a column-normalized confusion matrix, depicting
the model’s specificity, which shows the correctness of pre-
dictions for each class assumed by the model. As illustrated
in parts (a) and (b) of Fig. 1, the model fine-tuned on Mod-
elNet40 demonstrates high accuracy. At the same time, er-
rors predominantly arise from similar categories within the
dataset. For instance, “flower pot” and “plant” are often
misclassified, likely due to the presence of flowers in some
of the flower pot models in the ModelNet40 dataset. Sim-
ilarly, parts (c) and (d) of Fig. 1 show the aforementioned
confusion matrices. As highlighted in the main paper, our
model’s performance on ScanObjectNN dataset has room
for enhancement compared to ModelNet40. The confusion
matrix reveals some misclassifications, but it is encourag-
ing to see that these errors predominantly occur between
closely related classes, such as ‘table’ and ‘desk’ or ‘sofa’
and ‘bed’. This suggests that our model has a solid grasp of
the key characteristics of these categories and that further
refinement of the classification criteria could lead to signif-
icant improvements in overall accuracy.
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