
GeoDiffuser: Geometry-Based Image Editing with Diffusion Models
Supplementary Material

Rahul Sajnani1,2 Jeroen Vanbaar2 Jie Min2 Kapil Katyal2 Srinath Sridhar1,2
1Brown University 2Amazon Robotics

A. Qualitative Results
We present more qualitative results towards the end of

the document in Figure 10 and Figure 11. We also compare
our method against prior works in Figure 9 for 2D edits.

B. Implementation Details
The shared attention along with the loss functions de-

fined in the manuscript, enable performing geometry image
edits as a reverse diffusion process by optimizing the la-
tents and text embeddings. To make the optimization faster,
we optimize every alternate step for the initial 32 diffusion
steps. We set an initial learning rate of 1.5 and linearly
decay it to 0. We share attention across all blocks within
the UNet till step 45. All our experiments are performed
on an Nvidia RTX3090 with a run time of 30 seconds (for
removal) up to 45 seconds (for 2D and 3D edits) on im-
age resolution of 512. Our timing is inclusive of the DDIM
inversion, optimization with feature re-projection, and edit
generation. We use [16] for projecting, splatting, and ren-
dering in our attention sharing mechanism. Occasionally,
the histogram of the edited image does not match the in-
put image and we match color histograms between the two.
We detail attention sharing mechanism in Algorithm 1 and
editing with GeoDiffuser in Algorithm 2.

C. Evaluation and Baselines
We detail the procedure to perform geometric edits us-

ing all our baselines. We also perform a timing and perfor-
mance analysis of each baseline.

C.1. FreeDrag [6]

Implementation: FreeDrag extends DragDiffusion [18] to
perform drag edits with better point tracking. We use the
diffusion version in the official FreeDrag implementation
which works better on real-world images for our evaluation.
For each edit, we first uniformly sample 40 points within the
object mask and use the per pixel transform F to get the tar-
get points of the drag to edit images using FreeDrag. This
ensures that the same geometric transform is used for edit-
ing for a fair comparison. Sampling more points increased
the edit time and did not improve the results. Each FreeDrag
edit performs 200 LoRA steps with text prompt followed by
1000 drag optimization steps. We had to increase the opti-

mization steps from 300 to 1000 in their implementation as
FreeDrag did not converge correctly for large edits tested in
our work with 300 steps.
Timing Analysis: The 200 LoRa optimization steps runs
for 116.26 seconds and the optimization using 1000 steps
runs for 165.24 seconds.
Performance Analysis: We notice that FreeDrag optimiza-
tion averages nearby drag vectors and does not adhere to the
edit. Additionally, it often stretches objects as it does not
have removal capabilities baked into the optimization and
does not track points appropriately for large edits while our
method produces plausible results while being significantly
faster (see Figure 9 and Fig. 4 manu.).

C.2. Diffusion Handles [12]

Implementation: We use the official implementation from
the authors of Diffusion Handles. Each edit utilizes the
depth map and camera transformation to perform the ge-
ometric edit. Diffusion handles first performs a null-text
inversion using the depth to image stable diffusion model
and then inpaints the foreground region of the object using
LaMa [19]. The inpainted image is then used to estimate
the background depth of the scene. The background depth
is blended with the transformed foreground object. This
transformed depth map along with transformed activations
of the depth to image SD model is then used to generate the
edited image as detailed in [12]. Additionally, we had to
change the camera FOV to 49.92◦ to ensure that the same
transformation is applied during the edit.
Timing Analysis: Each edit requires 60 seconds of Null-
text optimization followed by 35 seconds of edit.
Performance Analysis: We notice that [12] fails to pre-
serve the image content and style, but adheres to the fore-
ground transformation well. However, the image style is not
preserved when the depth maps are not predicted using [15]
because they are not in the training distribution of Depth
to Image Stable Diffusion model. This leads to low Clip
Similarity (CS) and degradation in content preservation as
shown in the qualitative comparisons if our manuscript.
However, we do not have this limitation and can leverage
depth maps from any monocular depth estimator. Another
limitation for Diffusion Handles is the reliance on multiple
depth predictions (for foreground as well as background)
and then merging the foreground depth with the background
depth. The image generated using this merged depth map

Algorithm 1 Geometric Attention Sharing
Require: eQ(edit query), eK(edit key), rQ(ref. query), rK(ref. key), rV (ref. value),F(transformation),Mobj(object mask)
Ensure: OYedit := AttentionSharing(eQ, eK, rQ, rK, rV,F ,Mobj)

1: GYref := Attention(F(rQ), rK, rV) ▷ Reference Guidance and Applying Transform F
2: if SelfAttention then ▷ If Self-attention block
3: GYedit := Attention(eQ, rK, rV) ▷ Use reference key
4: else
5: GYedit := Attention(eQ, eK, rV) ▷ Use edit key
6: end if
7: if DiffusionCorrection then ▷ If Diffusion Correction (see Appendix J)
8: OYedit :=

GYedit ▷ GYedit automatically finds correspondences between eQ and rK to correct the transformation enabling plausible edits.
9: else

10: OYedit := F(Mobj) · GYref + (1−F(Mobj)) · GYedit
11: end if
12: return OYedit

Algorithm 2 Geometric Editing with GeoDiffuser
Require: rz0(reference latent),F(transformation),Mobj(object mask),Φ(null-prompt or optional text)
Ensure: ez := GeometricEdit(rz0,F ,Mobj ,Φ)
1: {rzT , rzT−1...,

rz1} ← DDIMInversion(rz0, Φ) ▷ Reference Inversion
2: ez := rzT;

rz := rzT ▷ Initialize edit latent with reference latent
3: for t = T→ 1 do
4: if (t ≤ 30) AND (t %2 == 0) then ▷ Optimize
5: , , Ldict := DiffusionStep([rz, ez], Φ,F ,Mobj , t) ▷ Diffusion Step with Attention Sharing and Loss Dictionary Computation
6: L := AdaptiveLoss(Ldict) ▷ Weigh losses adaptively and sum
7: ez := ez −∇ezL; Φ := Φ−∇ΦL ▷ Optimization Update by backpropagating through the diffusion model
8: end if
9: , ez, := DiffusionStep([rz, ez], Φ,F ,Mobj , t)

10: rz := rzt−1 ▷ Update reference latent with inversion trajectory for Direct Inversion [5]
11: end for
12: return ez

produces improper object removal and at times replaces the
object with another instance of the same type. 2D edits
with [12] were not good as a constant depth for foreground
object was not producing good results even after null-text
optimization.

C.3. Dragon Diffusion [10, 11]

Implementation: We use the 2D movement feature of the
official Dragon Diffusion implementation for 2D edits and
40 drag points for 3D edits. We use the camera projection,
mask, and depth maps to get the target point locations simi-
lar to the FreeDrag implementation. We also tried using 100
drag points to perform 3D edits, but this made results worse
as the edit moved objects partially, introduced holes, and
did not preserve its appearance. For 2D edits, its movement
feature utilizes an object mask, a source point and a target
drag location. We use the IP adapter [11] that is trained for
editing as well for this benchmark, but it did not edit real
images very well. We had to increase the weights for ϵopt
and ϵcontent losses for better object removal and content
preservation to perform real-world edits.
Timing Analysis: Dragon Diffusion performs inversion in
4 seconds and uses an optimized implementation that edits
images in 20 seconds. This method is quick as it doesn’t
deal with 3D geometry projection and uses the memory

bank to speed up the generation process. We can leverage
the memory bank to speed up our model as a future work.

Performance Analysis: Dragon Diffusion does not per-
form well to inpaint disocclusions or preserve the fore-
ground. It has a marginally high clip similarity score as
it does not completely remove the object from the source
introducing duplicates.

C.4. Zero123-XL + LaMa [8, 19]

Implementation: For this baseline, we first use [19] to in-
paint the region of the removed foreground object. We then
Zero123-XL to predict the novel view of the transformed
object and composite it to the in-painted background image
using Laplacian pyramid blending.

Timing Analysis: Zero123-XL + LaMa takes about 5 sec-
onds to run for each edit

Performance Analysis: Zero123-XL moves the object and
LaMa removes the object, but it fails to preserve the fore-
ground accurately as it is not in the model’s training dis-
tribution. It is also difficult to control the per-pixel trans-
form accurately with Zero123-XL as it infers object geom-
etry from the model’s learned distribution resulting in high
MD and WE metrics compared to our work.

C.5. Diffusion Self Guidance (DSG) [4]

Implementation: We ran the official implementation of
DSG from the authors but it did not perform well for real-
images as the authors provide code only for running on gen-
erated images. We instead use the implementation of [22]
and incorporated DDIM inversion to preserve details of the
input image that improved the quality of results using Sta-
ble Diffusion V1.4 model. The original work uses Imagen
model which is not available. We transform the shape using
the transform F in our paper and use the shape guidance
from Eqn. 9 of the DSG paper to penalize for movement
which works better according to authors compared to cen-
troid guidance. We had to double the shape and appearance
guidance from the default implementation for real images.
Timing Analysis: This implementation uses 50 DDIM
steps to perform edits and takes 50 seconds to edit.
Performance Analysis: DSG often loses appearance de-
tails when the shape guidance is large or does not move the
object when the appearance guidance is large. This primar-
ily occurs because it does not dis-entangle appearance and
geometry accurately leading to improvement of appearance
at the cost of movement or vice versa. The geometric atten-
tion sharing mechanism of our work dis-entangles geometry
from appearance leading to more accurate edits both quali-
tative and quantitatively (see manuscript Tab. 1, Fig. 4 and
supplement Fig. 9)

Note that we use prompts for baselines: FreeDrag,
Dragon Diffusion, Diffusion Handles, Diffusion Self Guid-
ance and do not require prompts for editing using GeoD-
iffuser. Additionally, we perform all timing analysis using
Nvidia RTX 3090 on the same node. The metric evalua-
tions for all the methods use the default editing parameters
from the official implementation unless mentioned other-
wise above.

D. Edit Attention Progression
We show the edit progression over different reverse dif-

fusion time-steps in Figure 1. We visualize the top principal
component of the self-attention map and show the move-
ment of the car as the optimization progresses. Note that the
shadow (dark) region in the attention map also shifts with
the car. Transforming the reference query and then comput-
ing the attention map transforms the shadows as well (see
Figure 1).

Input t = 0 t = 5 t = 10 t = 15 t = 45 Our Result

…

Figure 1. Attention Progression: We visualize the principal com-
ponents of the self attention maps within the first up-block layer
during editing. At earlier time steps (t = 5), the attention is tran-
sitioning to move the car, but eventually moves the car to the de-
sired location at t = 45. Transforming the attention map shifts the
attention corresponding to the shadow of the car.

Camera Projection: We set the camera FOV 49.92◦ for all
edits in our work and we do not require any dataset specific
camera intrinsic matrix.

E. Metrics
Mean Distance (MD): We use the mean distance metric
from [18]. [18] perform drag based edits in their work and
have source as well as their corresponding target drag loca-
tions. The mean distance metric computes correspondences
between the input and the edited image using DiFT [20]
and then estimates the difference between the target edit
location and the predicted target location obtained using
DiFT. In our case, all pixels in the object foreground be-
come the source edit location, however, finding DiFT cor-
respondences for each foreground pixel is very compute in-
tensive. Hence, we find interest points using SiFT [9] in the
foreground of the source image and treat them as the source
edit location. We can then obtain the target edit location
using the transform F estimated using camera projection.
We then compute DiFT correspondences for these interest
points and compute the mean distance metric.
Warp Error (WE): The mean distance metric only mea-
sures edit adherence for interest points. We instead warp
foreground of the source image and compute an L1 error.
This metric measures the error between the warped fore-
ground source image and the edited image. It measures
preservation of the foreground object as well as how well
it adheres to the edit.

The mean distance is analogous to Re-projection error
and the Warp Error is analogous to Photometric error from
the Computer Vision literature.
Clip Similarity (CS): We often notice degrade in back-
ground and content preservation after the edit. To ensure
that the edits do not degrade the contents of the image, we
compute the clip image embeddings [14] of the source and
the edited image. We then use these embeddings to esti-
mate the cosine similarity between them to measure content
preservation between them.

A good editing approach should have low Mean Distance
(MD) and Warp Error (WE) as well as have high Clip Sim-
ilarity (CS).

t=30 t=37 t=45Input

Figure 3. Geometry Guidance: Increasing steps t for geometric
attention sharing better preserves object style (translation edit).

F. Ablations
We perform a visual ablation of our design choices. Fig-

ures 2 and 3 shows the importance of the attention sharing
mechanism and adaptive optimization. We can see a degra-
dation in style preservation of the edit when we don’t per-

Input No Adaptive
Optimization

Adaptive
Optimization

Figure 2. Ablation of adaptive optimization. Without adaptive
optimization, the same losses successfully inpaint some images
while others fail (middle row). With our adaptive optimization,
the same loss function works well for any image.

form geometric attention sharing till step 45. Without the
adaptive optimization, we need image specific tuning for
loss weights which is not scalable.

In Figure 4, we use our general editing framework to per-
form the same edit using various Stable Diffusion models.

SD 1.4 SD 1.5 SD 2.1Input SD 2

Figure 4. Editing ablation using different Stable Diffusion
Models: We perform the same edit using different versions of Sta-
ble Diffusion. Notice how the line is incomplete in some cases and
the inpainted backgrounds are different. Our geometric attention
sharing mechanism ensures that the foreground adheres to the edit
and stays the same.

G. Perceptual Study
We conducted a perceptual study with 53 participants

to measure the efficacy of inpainting the background and
benchmark GeoDiffuser against Zero123-XL. Our percep-
tual study was conducted using Qualtrics [1]. We first con-
ducted a pilot study having 2 images per division type with
3 users to ensure that all questions are clear. These users
did not participate in the final study. After getting feedback
from the pilot study we conducted the full study. Each par-
ticipant completed the study within 10 minutes. They were
allowed to click and enlarge images for better inspection.
We randomized the order of options presented in the study
to avoid biases. In total we presented 70 images (30 for re-
moval, 40 for other transforms) from our dataset. The ques-
tions were divided in three categories: edit realism (ER),
edit adherence (EA), and removal edit realism (RRE).

For removal, we generated results with LaMa [19], and
for the remaining two categories, results were generated
with Lama followed by Zero123-XL [8]. Each participant
answered 12 ER questions, 12 EA questions and 6 RRE
questions, for a total of 30 visual questions. In total 53
users participated in the study for which they received no
compensation.

Figure 5 shows the participant preference rate for each
division of the study. For RRE, out of the 318 choices, par-

Figure 5. Results from perceptual study show that participants
prefer our edits over [7] and [19] in a majority of the cases.

ticipants preferred our method in 94.06% of the time, which
shows that GeoDiffuser is better able to inpaint the disoc-
cluded background regions, especially removing shadows
(see Figure 11).

For ER, our method was preferred 86.48% out of 636
cases. This demonstrates that GeoDiffuser preserves ob-
ject style better than other methods, especially in transform-
ing shadows and reflections. Finally, for EA we included
included 16 2D and 24 3D edits. Our method was pre-
ferred 88.48% out of 636 cases. This demonstrates that
our method more faithfully performs the intended edit, even
challenging ones such as 3D rotation. Whereas the base-
line is only capable of performing edits from a more narrow
range.

H. Failure Cases

Figure 6 displays examples where our method does not
perform well. The generation capabilities of the diffusion
model at times produces sub-optimal solutions for fore-
ground and background of the image. Additionally, similar
to prior works, we can not generate novel views with large
rotations and this is a future direction to explore.

Figure 6. Failure Cases: Each example presents the input image
at the top followed by the edited image at the bottom. As our
geometric edits are performed in a lower dimensional latent space,
we face aliasing and interpolation artefacts as shown in the yellow
regions of the ship (left). Occasionally our optimization results
in sub-optimal solutions for foreground (middle) and background
dis-occlusions (right).

Algorithm 3 Object Removal Loss Algorithm

Require: rQ, rK, eQ, eK
Ensure: Lremove := RemovalLoss(rQ, rK, eQ, eK)

if SelfAttentionBlock then
GAedit := AM(eQ, rK) ▷ Shared Attention Map

else if CrossAttentionBlock then
GAedit := AM(eQ, eK) ▷ Shared Attention Map

end if
GAref := AM(rQ, rK)
ρobj→bg, ubg := torch max(torch bmm(GAedit,

GAref)⊙Mbg,−1) ▷ Foreground to background correlation
ρobj→obj , := torch max(torch bmm(GAedit,

GAref)⊙Mobj ,−1) ▷ Foreground to foreground correlation
dobj→bg := NormalizedCoordinateDistance(ubg) ▷ Coordinate distance to the background location having maximum
correlation
Lremove := mean

(
e−dobj→bg(ln(ρobj→obj)− ln(ρobj→bg))

)
I. Miscellaneous Edits

Our method enables object duplication by turning off the
optimization or setting the removal loss to 0 (Figure 7).

Input Edit With Removal Loss w/o Removal Loss

Figure 7. Foreground duplication by reducing the turning off opti-
mization or setting the removal loss weight to zero.

J. Diffusion Correction
Occasionally, edit transforms F are incorrect. For in-

stance, a straight line might be mapped to a jagged curved
line. In these cases, it is important for the editing method to
marginally disregard the desired edit and preserve the con-
tent of the image. This reduces adherence to the edit and
produces better results. We can also control this in our at-
tention sharing mechanism by allowing the diffusion model
to self-correct and find correspondences for more realistic
results as shown in Algorithm 1. This plays a crucial role in
edits with sharp geometric structures such as buildings etc
(see Figure 8). We enable Diffusion Correction for the last
15 reverse diffusion steps in our experiments.

Input Edit
w/o Diffusion

Correction
Diffusion
Correction

Figure 8. Diffusion Correction to correct transforms and aliasing.

K. Object Removal
We detail the object removal loss in Algorithm 3.

L. Amodal Loss
Transforming foreground objects drastically introduces

depth smearing. We add a small penalty to each edit to

force inpainting of the foreground object in these smeared
regions using the amodal loss on the amodal mask Mamodal

obtained by interpolating features after reprojection as

Lamodal := mean(Mamodal · ||GYedit − interp(Yref)||1).
(1)

M. Future Work & Impact
We present GeoDiffuser, a method that performs geo-

metric transform on objects to edit real-world images. Our
method only requires performing geometric manipulation
to the attention layers of the model along with optimiza-
tion to perform the desired edit. This assumption makes our
method very general and better adhere to edits that can be
leveraged by future works for geometric analysis of diffu-
sion models and editing in video diffusion models. Another
interesting future direction is to perform unsupervised novel
view synthesis for real-world scenes by leveraging key ideas
from our work that might be able to improve Score Distilla-
tion Sampling [13].

N. Discussion on Concurrent Works that Train
on Video Data

Concurrent works such as InstaDrag [17], Drag-
NUWA [21], & MagicFixup [3] perform drag edits by train-
ing over video data. We detail the advantages & disadvan-
tages of these works and similar works without testing some
of these implementations as they are not public. Two advan-
tages of these works include: 1) the inpainting for in/near-
distribution images will be accurate with better novel view
synthesis of foreground object and 2) faster inference. How-
ever, these methods and in-general video diffusion models
have the following dis-advantages that need further explo-
ration: 1) They require large scale training datasets and
heavy compute for training & do not leverage the capabili-
ties of existing diffusion models as in our work. 2) moving

GeoDiffuser (Ours) Dragon Diffusion Zero123XL + LaMaInput FreeDragEdit Diffusion Self Guidance

Figure 9. We perform the same edit using prior works and compare with out work. We show 2D edits here as Dragon Diffusion can not
perform 3D edits. We show the intended 2D edit in column 2 where the orange mask determines the region to be inpainted and the green
regions determine the region to be filled with foreground. Note that Dragon Diffusion [10] & FreeDrag [6] requires prompts along with the
edit and our method does not. FreeDrag does not remove the object from the source location appropriately resulting in stretching it.

foreground most often introduces background movement as
video datasets do not distinguish between foreground and
background motion, 3) these methods do not bake geome-
try within their architecture leading to edits that may not be
3D consistent, 4) they are trained with optical flow within
a bounded range and often lose object details and identity
when the desired edit motion is beyond this range, and lastly
5) they do not explore having inference time optimization
disabling the user to control different aspects of the edit by
merely changing loss weights. We believe that the geom-
etry attention sharing mechanism and loss functions from
GeoDiffuser can help improve these models to ensure edits
and generation that are consistent with geometry in future
works.

O. Discussion on Slider based UI as opposed to
Drag UI

We follow the slider UI of zero123 [8]. It is easy to con-
trol precise rotations as well as preserve the geometry using

sliders as compared to a drag-based UI. However, we can
also have a drag-based UI if the user prefers, however, this
makes controlling rotations difficult.

P. User Interface
See Figures 12 and 13 that display the user interface used

to perform edits using GeoDiffuser. We develop this user
interface using Gradio [2]. We also submit a video along
with this supplement that displays the editing process per-
formed by a user and a website that shows gifs of edits using
GeoDiffuser.

Q. Complex Shapes and Human Edits
Our method generates plausible edits for complex 3D

shapes and close-up humans images (Figure 14). However,
our method finds it challenging to preserve arms and legs in
far shots of humans.

Removal

2D Edits

Scaling

3D Edits

Figure 10. Qualitative results showing all variations of 2D and 3D edits performed by GeoDiffuser on natural images. Notice how our
method not only removes/transforms objects but also the object’s reflection and shadows (car, couch, boat). For 3D edits, our method
produces plausible results for rotations as high as 30◦. For scaling, we can perform both uniform and non-uniform scaling operations.

Removal

2D & 3D Edits

Figure 11. We display more qualitative results of our method. Each example has the input image in the left and the result of the edit in the
right.

Use via API · Built with Gradio

O!icial Implementation of Geometry Di!usion Editor: GeoDi!user

Editing Real Image

Foreground Image

Click Points to Select Object

4480 6720

Show Background Image Tab

Image

Mask

Transformed Image Depth Image

Load Experiment

Show inpainting loss weights

Show stitching loss weights

Translation
slider along
x axis

0.085
Translation
slider along
y axis

0

Translation slider along z axis
0

./ui_outputs/new_tr
ies/Mix/9

Clear Transforms

Save Experiment

Rotation slider
along x axis

0
Rotation slider
along y axis

0

Rotation slider along z axis
0

Mix ./ui_outputs/

Check Transformed Image

Get Depth

View Advanced
Options

Show Geometry
Editing Loss Weights

for Movement

Scale x
1

Scale y
1

Scale z
1

depth_anything

Advanced Options
Guidance Scale

3

Cross replace
0.95

Self replace
0.95

Push object depth farther away from
camera [0-1]

0.1

Skip Steps
2

Latent replace
0.1

optimize steps
0.65

Fast Optim Steps
0

cam_focal_length
550

ddim steps
50

Num first optim steps
1

learning rate
0.03

splatting radius
1.3

splatting tau
1

splatting points per pixel
15

Movement loss
background loss (self)

55

background loss (cross)
45

loss removal_scale (self)
1.6

loss removal_scale (cross)
1.6

foreground preservation loss (self)

15.5

foreground preservation loss (cross)

8.34

Hide Movement Panel

Move Object

loss movement_smoothness (self)

30

loss movement_smoothness (cross)

15

Edited Image

Input image in original aspect ratio Edited image in original aspect ratio

Click Points Mask Image

Transformed Mask Depth Image

Edited Image

Download Input Image Download Image

Height Width

tx ty

tz

Load exp directory

rx ry

rz

Experiment Type Save Directory Parent Path

sx sy

sz

Depth Estimator

g_scale

Cross replace

Self replace

Push object depth farther away
from camera [0-1]

skip_steps

Latent replace

Optimize steps

Fast Optim Steps

cam_focal_length

DDIM steps

Num first optim steps

learning rate

splatting radius

splatting tau

splatting points per pixel

Background loss (self)

Background loss (cross)

loss removal_scale (self)

loss removal_scale (cross)

foreground preservation loss
(self)

foreground preservation loss
(cross)

loss movement_smoothness
(self)

loss movement_smoothness
(cross)

Figure 12. GeoDiffuser UI that allows users to edit images in the wild. We provide options for users to choose a monocular depth model
for geometric editing. The transformed image represents the edit that the user wishes to perform. Here, the orange mask displays the region
that needs to be inpainted.

Use via API · Built with Gradio

O!icial Implementation of Geometry Di!usion Editor: GeoDi!user

Editing Real Image

Foreground Image

Click Points to Select Object

4480 6720

Show Background Image Tab

Image

Mask

Transformed Image Depth Image

Load Experiment

Show inpainting loss weights

Show stitching loss weights

Translation
slider along
x axis

0.085
Translation
slider along
y axis

0

Translation slider along z axis
0

./ui_outputs/new_tr
ies/Mix/9

Clear Transforms

Save Experiment

Rotation slider
along x axis

0
Rotation slider
along y axis

0

Rotation slider along z axis
0

Mix ./ui_outputs/

Check Transformed Image

Get Depth

View Advanced
Options

Show Geometry
Editing Loss Weights

for Movement

Scale x
1

Scale y
1

Scale z
1

depth_anything

Advanced Options
Guidance Scale

3

Cross replace
0.95

Self replace
0.95

Push object depth farther away from
camera [0-1]

0.1

Skip Steps
2

Latent replace
0.1

optimize steps
0.65

Fast Optim Steps
0

cam_focal_length
550

ddim steps
50

Num first optim steps
1

learning rate
0.03

splatting radius
1.3

splatting tau
1

splatting points per pixel
15

Movement loss
background loss (self)

55

background loss (cross)
45

loss removal_scale (self)
1.6

loss removal_scale (cross)
1.6

foreground preservation loss (self)

15.5

foreground preservation loss (cross)

8.34

Hide Movement Panel

Move Object

loss movement_smoothness (self)

30

loss movement_smoothness (cross)

15

Edited Image

Input image in original aspect ratio Edited image in original aspect ratio

Click Points Mask Image

Transformed Mask Depth Image

Edited Image

Download Input Image Download Image

Height Width

tx ty

tz

Load exp directory

rx ry

rz

Experiment Type Save Directory Parent Path

sx sy

sz

Depth Estimator

g_scale

Cross replace

Self replace

Push object depth farther away
from camera [0-1]

skip_steps

Latent replace

Optimize steps

Fast Optim Steps

cam_focal_length

DDIM steps

Num first optim steps

learning rate

splatting radius

splatting tau

splatting points per pixel

Background loss (self)

Background loss (cross)

loss removal_scale (self)

loss removal_scale (cross)

foreground preservation loss
(self)

foreground preservation loss
(cross)

loss movement_smoothness
(self)

loss movement_smoothness
(cross)

Figure 13. GeoDiffuser UI also provides options for varying parameters for editing. The edited image in the bottom displays the image
after the edit is complete.

Figure 14. Editing Complex Geometries and Humans. For each row, the left shows the input image and the right shows the result of the
edit. Our method provides plausible edits for most cases of complex 3D shapes and humans even when the model has not seen this. Last
row shows some limitations of our work where the ear is interpolated because of editing at low resolution and smearing in depth maps.
Our edits are limited by the base model wherein there are some cases where the face/complex shape loses detail because the model has not
seen these during training. We also notice that at times the model opens eyes even when the eyes are closed in the input image because of
training bias in the stable diffusion base model.

References
[1] Qualtrics. https://www.qualtrics.com. 4
[2] Abubakar Abid, Ali Abdalla, Ali Abid, Dawood Khan, Ab-

dulrahman Alfozan, and James Zou. Gradio: Hassle-free
sharing and testing of ml models in the wild. arXiv preprint
arXiv:1906.02569, 2019. 6

[3] Hadi Alzayer, Zhihao Xia, Xuaner Zhang, Eli Shechtman,
Jia-Bin Huang, and Michael Gharbi. Magic fixup: Stream-
lining photo editing by watching dynamic videos. ArXiv,
abs/2403.13044, 2024. 5

[4] Dave Epstein, Allan Jabri, Ben Poole, Alexei Efros, and
Aleksander Holynski. Diffusion self-guidance for control-
lable image generation. Advances in Neural Information
Processing Systems, 36, 2024. 3

[5] Xuan Ju, Ailing Zeng, Yuxuan Bian, Shaoteng Liu, and
Qiang Xu. Direct inversion: Boosting diffusion-based edit-
ing with 3 lines of code. arXiv preprint arXiv:2310.01506,
2023. 2

[6] Pengyang Ling, Lin Chen, Pan Zhang, Huaian Chen, Yi Jin,
and Jinjin Zheng. Freedrag: Feature dragging for reliable
point-based image editing. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 6860–6870, June 2024. 1, 6

[7] Minghua Liu, Ruoxi Shi, Linghao Chen, Zhuoyang Zhang,
Chao Xu, Xinyue Wei, Hansheng Chen, Chong Zeng, Ji-
ayuan Gu, and Hao Su. One-2-3-45++: Fast single image
to 3d objects with consistent multi-view generation and 3d
diffusion. arXiv preprint arXiv:2311.07885, 2023. 4

[8] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tok-
makov, Sergey Zakharov, and Carl Vondrick. Zero-1-to-3:
Zero-shot one image to 3d object. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 9298–9309, 2023. 2, 4, 6

[9] G Lowe. Sift-the scale invariant feature transform. Int. J,
2(91-110):2, 2004. 3

[10] Chong Mou, Xintao Wang, Jiechong Song, Ying Shan, and
Jian Zhang. Dragondiffusion: Enabling drag-style manipu-
lation on diffusion models, 2023. 2, 6

[11] Chong Mou, Xintao Wang, Jiechong Song, Ying Shan,
and Jian Zhang. Diffeditor: Boosting accuracy and flex-
ibility on diffusion-based image editing. arXiv preprint
arXiv:2402.02583, 2024. 2

[12] Karran Pandey, Paul Guerrero, Matheus Gadelha, Yannick
Hold-Geoffroy, Karan Singh, and Niloy J. Mitra. Diffusion
handles enabling 3d edits for diffusion models by lifting ac-
tivations to 3d. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
7695–7704, June 2024. 1, 2

[13] Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Milden-
hall. Dreamfusion: Text-to-3d using 2d diffusion. In The
Eleventh International Conference on Learning Representa-
tions, 2023. 5

[14] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual

models from natural language supervision. In International
Conference on Machine Learning, 2021. 3

[15] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards robust monocular
depth estimation: Mixing datasets for zero-shot cross-dataset
transfer. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 44:1623–1637, 2019. 1

[16] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv preprint arXiv:2007.08501, 2020. 1

[17] Yujun Shi, Jun Hao Liew, Hanshu Yan, Vincent Y. F. Tan,
and Jiashi Feng. Instadrag: Lightning fast and accurate
drag-based image editing emerging from videos. ArXiv,
abs/2405.13722, 2024. 5

[18] Yujun Shi, Chuhui Xue, Jiachun Pan, Wenqing Zhang, Vin-
cent YF Tan, and Song Bai. Dragdiffusion: Harnessing diffu-
sion models for interactive point-based image editing. arXiv
preprint arXiv:2306.14435, 2023. 1, 3

[19] Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin,
Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov,
Naejin Kong, Harshith Goka, Kiwoong Park, and Victor
Lempitsky. Resolution-robust large mask inpainting with
fourier convolutions. In Proceedings of the IEEE/CVF winter
conference on applications of computer vision, pages 2149–
2159, 2022. 1, 2, 4

[20] Luming Tang, Menglin Jia, Qianqian Wang, Cheng Perng
Phoo, and Bharath Hariharan. Emergent correspondence
from image diffusion. arXiv preprint arXiv:2306.03881,
2023. 3

[21] Sheng-Siang Yin, Chenfei Wu, Jian Liang, Jie Shi, Houqiang
Li, Gong Ming, and Nan Duan. Dragnuwa: Fine-grained
control in video generation by integrating text, image, and
trajectory. ArXiv, abs/2308.08089, 2023. 5

[22] Shengzhe Zhou. Diffusion self guidance implementa-
tion. https://github.com/Sainzerjj/Free-
Guidance-Diffusion. 3

https://www.qualtrics.com
https://github.com/Sainzerjj/Free-Guidance-Diffusion
https://github.com/Sainzerjj/Free-Guidance-Diffusion

