
Unsupervised Denoising for Signal-Dependent
and Row-Correlated Imaging Noise

Supplementary Material

Benjamin Salmon and Alexander Krull
School of Computer, University of Birmingham

brs209@student.bham.ac.uk, a.f.f.krull@bham.ac.uk

https://github.com/krulllab/COSDD

1. Latent Variables Represent Clean Images
The training of the signal decoder assumes that every

sampled value of the latent variable z corresponds one clean
image, or signal, s. We denote the signal corresponding to
a value of z by s(z). Using this relationship, the signal de-
coder, fν(z), can be trained to estimate

fν(z) ≈ Epθ(x|z)[x] = Epθ(x|s(z))[x] = s(z). (1)

Here, we provide an another way of viewing this determin-
istic relationship.

If the latent variables of our model truly represent only
signals, then the AR decoder, pθ(x|z), must model only the
noise generation process. Therefore, different random sam-
ples from the AR decoder for the same value of latent vari-
able will be images with the same underlying signal and
different random samples of noise. Since the noise is zero-
centered, this allows us to produce an estimate of the signal
by calculating the mean of many samples from the AR de-
coder. That is, if x1,x2, . . . ,xL are L random samples from
pθ(x|z),

x =
1

L

L∑
l=1

xl ≈ Epθ(x|z)[x] = s(z). (2)

In this section, we experimentally verify Eq. (1) by es-
timating the signal underlying a noisy image x using both
techniques; by passing a latent variable sample to the signal
decoder and by averaging 10,000 noisy image samples from
the AR decoder. If Eq. (1) is true, the two estimates of the
signal should be nearly identical for the same value of latent
variable.

Figure 1 shows the result of this experiment for two dif-
ferent random samples from the approximate posterior, z1
and z2. The two estimates of s(z1) are visually very similar
to each other, while exhibiting clear structural differences
from the two estimates of s(z2).

x fν(z1) x : x∼ pθ(x|z1) fν(z2) x : x∼ pθ(x|z2)

Figure 1. Given a noisy image x, we took two samples from the
approximate posterior, z1 and z2. For each latent variable sample,
we produced one estimate of the signal by passing it through the
signal decoder fν and one by averaging 10,000 samples from the
AR decoder, pθ(x|z).

2. Training and Inference

2.1. Hyperparameters

Both the main VAE and the signal decoder were trained
with an Adamax [6] optimizer with a learning rate of 0.002.
Both learning rates decreased by a factor of 10 when the
validation loss had plateaued for 50 epochs. The models for
all datasets were trained for a maximum of 80,000 steps but
stopped if validation loss had plateaued for 100 epochs.

For the non-simulated datasets, training images were
randomly cropped to a size of 256× 256 at each epoch and
a batch size of 16 was used, but this was split into 4 virtual
batches. For the FFHQ - Stripe and FFHQ - Checkerboard
datasets, training images were kept at their original resolu-
tion of 128× 128 and a batch size of 64 was used, but split
into 16 virtual batches.

2.2. Hardware and Software

The workstation used for this paper’s experiments is a 36
core Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz with
134GB of RAM running Ubuntu 22.04.4, Python 3.11.5 and
pytorch-lightning 2.2.1. The GPU used for training is a
NVIDIA GeForce RTX 3090 with 24GB of VRAM. For
all datasets, training required approximately 20GB of GPU

1

https://github.com/krulllab/COSDD

memory with the large network and 6GB with the small
network.

2.3. Times

Training a model for 80,000 steps with our hardware
takes approximately 24 hours. After training, denoising
100 images of size 512x512 by randomly sampling 100 de-
noised estimates takes 13 minutes when using a batch size
of 10. Increasing batch size made no improvement as the
GPU is at 100% utilization.

2.4. PSNR of Minimum Mean Square Error Esti-
mates

In addition to the quantitative results presented in the pa-
per, the PSNR of the mean of 1, 10 and 1000 random de-
noised samples can be found in Tab. 1.

3. Architecture
We proposed two network architectures for denoising,

one large and one small. Each model consists of a hierar-
chical Variational Autoencoder (VAE) [11], an autoregres-
sive decoder [13] and our novel signal decoder. In the large
network, the VAE has 14 levels in its hierarchy. The first
13 levels have 64 latent dimensions each, while the final
level has 128 dimensions. The latent variable passed to the
decoders is sampled from this final level. At each level on
both the bottom-up path and the top-down path is a resid-
ual block consisting of two sets of a convolution followed
by a batch normalization [4] followed by a Mish activation
function [9]. Each residual block is followed by a gated
block [12]. Resampling is performed at alternating levels.
The small network is the same except that it has 6 levels to
its hierarchy and half the latent dimensions.

The autoregressive decoder is built with eight layers of
conditional PixelCNN blocks as proposed in [13], but we
found the performance to be better with a ReLU activation
function [1] than with gated units. The convolving kernels
in the AR decoder have dimensions 1 × k, where k is the
kernel size. In the first layer of the decoder, the input is
padded with k zeros on its left-hand side, and then a convo-
lution is applied. At all subsequent layers, the input features
are padded with k− 1 zeroes on the left-hand side. This re-
sults in a row-based autoregressive receptive field. For a
column-based receptive field, the kernels have dimensions
k × 1 and padding is applied to the top of the input. For all
of our experiments, k = 5. The convolutions in every other
layer have dilated kernels [15] and all have 64 filters. The
likelihood distribution is a Gaussian mixture model, with 3
components used for all datasets except the FFHQ datasets,
for which 10 were used, and the STEM dataset, for which 5
were used.

The signal decoder is a convolutional neural network
consisting of four 3×3 convolutions with 128 filters, each

followed by a ReLU activation function.

4. Baselines
AP-BSN [7] These models were trained using the code
available at https://github.com/wooseoklee4/
AP-BSN using hyperparamters detailed in the original pub-
lication. We used a stride factor of 5 for all datasets.
Structured Noise2Void [2] and N2V2 [3] Both these
model types were trained using the code available at
https://github.com/juglab/n2v, using default
hyperparameters found in the example notebooks for SN2V
and hyperparameter values found in the original publica-
tion of N2V2. Following Broaddus et al. [2], SN2V masks
should be as small as possible while covering pixels with
a noise value that is highly predictive of the noise value in
the target pixel. A trial and error test of the mask size for
each dataset would be too computationally expensive, so
we follow [2] and mask 4 pixels on each side of the tar-
get pixel for all datasets except FFHQ - Checkerboard. The
structured component of noise in the FFHQ - Checkerboard
dataset can theoretically be predicted by seeing only two
pixels in the same column, so entire columns were masked
here. The orientation of the pixel mask was determined by
looking at the spatial autocorrelation in noise patches for
each dataset. The Mouse Nuclei dataset is corrupted by un-
structured noise, so was denoised with a single pixel mask.
HDN36 [10] These models were trained using the code
available at https://github.com/juglab/HDN/
using default hyperparameters found in the example note-
books. HDN36 requires a pre-trained noise model. We
followed Prakash et al. [10] and modeled the noise in
each dataset using a Gaussian mixture model. The noise
model parameters can be estimated from the training data
of datasets with available ground truth. For datasets with-
out ground truth, we trained the noise model using denoised
images from our method as pseudo-ground truth.
CARE [14] and N2N [8] Both of these model types were
trained using the code available at https://github.
com/CSBDeep/CSBDeep, using default hyperparame-
ters and setting noisy images as target for N2N.

5. Simulated Data
The Flickr Faces HQ thumbnails dataset [5], with reso-

lution 128 × 128, was made grayscale by averaging across
color channels. For FFHQ - Stripe, the ground truth, s,
was scaled to have pixel values between 0 and 1, and Pois-
son noisy images were created as x = 0.002×P(s/0.002).
Zero-mean Gaussian noise with a standard deviation of 0.02
was then added to these images. Finally, structured noise
was created by applying a horizontal Gaussian blur with
a standard deviation of 1 to white Gaussian noise with a
standard deviation of 0.025 and added on top. For FFHQ

https://github.com/wooseoklee4/AP-BSN
https://github.com/wooseoklee4/AP-BSN
https://github.com/juglab/n2v
https://github.com/juglab/HDN/
https://github.com/CSBDeep/CSBDeep
https://github.com/CSBDeep/CSBDeep

Table 1. Our denoiser randomly samples clean images for a given noisy image. A consensus solution can be produced by averaging random
samples. The PSNR of the mean of increasing sample sizes is shown below.

EMCCD SCM Simulated
No. samples Conv. A Conv. B Mouse Actin Mouse Nuclei* Actin Conf. Mito Conf. FFHQ Stripe FFHQ Checkerb.
1 36.54 42.33 37.43 42.25 26.81 22.62 32.27 33.03
10 37.39 43.90 39.03 42.91 27.37 23.39 35.24 35.85
100 37.49 44.10 39.23 42.98 27.42 27.50 35.66 36.27
1000 37.50 44.10 39.24 42.99 27.44 27.52 35.74 36.32

- Checkerboard, we added noise with inverse signal de-
pendence by sampling Gaussian noise from the distribution
N (0, 0.15×1/s). Then a vertical checkerboard pattern was
added by subtracting 0.1 from two pixels and adding 0.1 to
the next two pixels along columns. The starting point for the
checkerboard was randomly sampled from a uniform distri-
bution. For both FFHQ datasets, the final 1000 images were
designated as a test set.

6. Additional Qualitative Results
See overleaf for larger denoised images from each

dataset.

References
[1] Abien Fred Agarap. Deep learning using rectified linear units

(relu). arXiv preprint arXiv:1803.08375, 2018. 2
[2] Coleman Broaddus, Alexander Krull, Martin Weigert, Uwe

Schmidt, and Gene Myers. Removing structured noise with
self-supervised blind-spot networks. In 2020 IEEE 17th In-
ternational Symposium on Biomedical Imaging (ISBI), pages
159–163. IEEE, 2020. 2

[3] Eva Höck, Tim-Oliver Buchholz, Anselm Brachmann, Flo-
rian Jug, and Alexander Freytag. N2v2–fixing noise2void
checkerboard artifacts with modified sampling strategies
and a tweaked network architecture. arXiv preprint
arXiv:2211.08512, 2022. 2

[4] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. pmlr, 2015. 2

[5] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4401–4410, 2019. 2

[6] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[7] Wooseok Lee, Sanghyun Son, and Kyoung Mu Lee. Ap-
bsn: Self-supervised denoising for real-world images via
asymmetric pd and blind-spot network. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 17725–17734, 2022. 2

[8] Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli
Laine, Tero Karras, Miika Aittala, and Timo Aila.

Noise2noise: Learning image restoration without clean data.
In International Conference on Machine Learning, pages
2965–2974. PMLR, 2018. 2

[9] Diganta Misra. Mish: A self regularized non-monotonic ac-
tivation function. arXiv preprint arXiv:1908.08681, 2019.
2

[10] Mangal Prakash, Mauricio Delbracio, Peyman Milanfar, and
Florian Jug. Interpretable unsupervised diversity denoising
and artefact removal. In International Conference on Learn-
ing Representations, 2021. 2

[11] Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe,
Søren Kaae Sønderby, and Ole Winther. Ladder variational
autoencoders. Advances in neural information processing
systems, 29, 2016. 2

[12] Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical vari-
ational autoencoder. Advances in neural information pro-
cessing systems, 33:19667–19679, 2020. 2

[13] Aaron Van den Oord, Nal Kalchbrenner, Lasse Espeholt,
Oriol Vinyals, Alex Graves, et al. Conditional image genera-
tion with pixelcnn decoders. Advances in neural information
processing systems, 29, 2016. 2

[14] Martin Weigert, Uwe Schmidt, Tobias Boothe, Andreas
Müller, Alexandr Dibrov, Akanksha Jain, Benjamin Wil-
helm, Deborah Schmidt, Coleman Broaddus, Siân Culley,
et al. Content-aware image restoration: pushing the limits
of fluorescence microscopy. Nature methods, 15(12):1090–
1097, 2018. 2

[15] Fisher Yu and Vladlen Koltun. Multi-scale context
aggregation by dilated convolutions. arXiv preprint
arXiv:1511.07122, 2015. 2

Noisy

Denoised

Ground truth

Figure 2. Convallaria A

Noisy

Denoised

Ground truth

Figure 3. Convallaria B

Noisy

Denoised

Ground truth

Figure 4. Mouse Actin

Noisy

Denoised

Ground truth

Figure 5. Mouse Nuclei

Noisy

Denoised

Ground truth

Figure 6. Actin Confocal

Noisy

Denoised

Ground truth

Figure 7. Mito Confocal

Noisy

Denoised

Figure 8. Embryo

Noisy

Denoised

Figure 9. STEM

Noisy

Denoised

Figure 10. IR

Noisy

Denoised

Ground truth

Figure 11. FFHQ - Stripe

Noisy

Denoised

Ground truth

Figure 12. FFHQ - Checkerboard

	. Latent Variables Represent Clean Images
	. Training and Inference
	. Hyperparameters
	. Hardware and Software
	. Times
	. PSNR of Minimum Mean Square Error Estimates

	. Architecture
	. Baselines
	. Simulated Data
	. Additional Qualitative Results

