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A. LiDAR intensity
LiDAR intensity is a crucial aspect of the data collected

by LiDAR systems, offering insights into the surface char-
acteristics and material composition of scanned objects.
This intensity measurement reflects the amount of light that
returns to the sensor after being emitted and interacting with
a target. Several factors influence LiDAR intensity, includ-
ing the infrared wavelength reflectance of the surface ρ,
which depends on the material’s ability to reflect light; the
incidence angle θ, with perpendicular angles typically re-
sulting in stronger intensity readings; and the distance be-
tween the LiDAR sensor and the target Dt, where greater
distances lead to diminished intensity due to dispersion and
absorption. Thus, LiDAR intensity L is defined as Eq. (1).

L =
η2apaηsysηatm

4D2
t

ρ cos θ, (1)

where, ηapa, ηsys, and ηatm denote attenuation by aperture
size, camera response function, and atmospheric transmit-
tance accounting. The NTT-IID dataset prepares the LiDAR

(c) LiDAR intensity(a) Image (d) LiDAR depth(b) Gray₋scale image

Figure 7. Examples of (a) input image, (b) gray-scale image,
and its corresponding (c) LiDAR intensity and (d) LiDAR depth.
The whole image (top) and cropped image (bottom) are illustrated.
The shadow and the white arrow are visible in gray-scale image.
LiDAR intensity has no cast shadows while maintaining white ar-
rows, since LiDAR intensity is calculated from the intensity ratio
of irradiated and reflected lights, equivalent to an albedo at infrared
wavelength. Conversely, LiDAR depth represents the distance to
objects, resulting in the absence of cast shadows and white arrows.

intensity L, corrected by the object distance and surface
angle. The LiDAR intensity represents the intrinsic abil-
ity of a surface to reflect light, which is determined by the
material composition of the target. Surfaces with high re-
flectance, such as white concrete, reflect more light back
to the sensor compared to those with low reflectance, like
asphalt as Fig. 7.

B. USI3D, IID-LI, and LIET

This section describes the relations between the three
models; USI3D, IID-LI, and LIET. Appendix B.1 describes
the relationship between these models in terms of model
structure and loss including intermediate models. Ap-
pendix B.2 discusses in detail IID-LI, which was omitted in
the main paper. We evaluate the contribution of each struc-
ture and loss by evaluating USI3D, IID-LI, LIET and their
intermediate models in Appendix B.3.

1



B.1. Relationship between USI3D, IID-LI, and
LIET

Initially, we describe the relations between USI3D [18],
IID-LI [20], and LIET. IID-LI is the model of USI3D
incorporating the intensity-consistency (IC) loss, LiDAR-
intensity input, and the LiDAR intensity densification (LID)
module. The IC loss aligns the luminance value of the
albedo inferred from an input image to its corresponding Li-
DAR intensity for reducing cast shadows. LiDAR-intensity
input refers to the input of four channels data consisting of
image and LiDAR intensity in IID-LI instead of image in-
put in USI3D to make effective use of LiDAR intensity. The
LID module densifies the LiDAR intensity since its spar-
sity may deteriorate the IID quality. On the other hand,
LIET is also the model of USI3D incorporating LiDAR-
encoder path, image-LiDAR conversion (ILC) paths, and
albedo-alignment loss. To clearly the relationships among
these models, we summarize the implementation process
beginning from USI3D, along with the intermediary mod-
els as illustrated in Fig. 8. Initially, USI3D is implemented
for the baseline of IID-LI and LIET. Subsequently, we ex-
tended USI3D by incorporating an IC loss that aligns the
albedo inferred from an input image into its corresponding
LiDAR intensity as USI3D+IC. IID-LI is implemented by
incorporating LiDAR-intensity input and the LID module to
USI3D+IC. Since the distribution of LiDAR intensity varies
across samples, features are well trained by applying in-
stance normalization [24] rather than by scaling uniformly
across all samples. Thus, we also define USI3D+ICIN as
the model in which the scaling of the IC loss is changed
to instance normalization. In addition, a LiDAR-encoder
path and ILC path is add to USI3D+ICIN, and LIET+IC
is defined to effectively extract the feature of LiDAR in-
tensity. Finally, LIET is implemented by changing IC loss
into albedo aligning loss. Since LiDAR and cameras typ-
ically operate in distinct wavelength bands, the luminance
values of an inferred albedo may be unnatural on the chro-
matic material surface due to the direct comparison in IC
loss. Thus, we introduce albedo aligning loss that aligns the
gray-scale albedo inferred from an image to that from its
corresponding LiDAR intensity. The LiDAR-intensity uti-
lization and model architecture are summarized in Tab. 4.

B.2. IID-LI

IID-LI [20] is an unsupervised learning model that uti-
lizes LiDAR intensity during training and inference. IID-
LI is characterized by IC loss, LiDAR-intensity input, and
LID module. IC loss aligns the albedo inferred from an im-
age xri to the LiDAR intensity xl in gray scale to enhance
the IID quality. In addition, IID-LI is a completely-shared
model that accepts both an image and LiDAR intensity as
input and processes them simultaneously for both the train-
ing and inference processes as shown in Fig. 9 (b). The LID

(a) USI3D (b) USI3D+IC

(c) IID-LI

(d) USI3D+ICIN (e) LIET+IC (ours)

(f) LIET (ours)

IC loss

LID module

LiDAR input

Inst. norm.

ILC path

LiDAR-encoder path

IC→AA loss

Figure 8. Relations between USI3D, IID-LI, and LIET. (a) USI3D
is the baseline model of IID-LI and LIET. (b) USI3D+IC is defined
by adding the intensity consistency (IC) loss to USI3D. (c) IID-LI
is implemented by adding LiDAR intensity densified (LID) mod-
ule and LiDAR-intensity input. (d) USI3D+ICIN is the model in
which the scaling of the IC loss is changed to instance normaliza-
tion. (e) LIET+IC is defined for adding the LiDAR-encoder path
and ILC path to USI3D+ICIN. (f) LIET is implemented by chang-
ing IC loss into albedo aligning (AA) loss. IID-LI is defined for
adding LID module and four-channel input into USI3D+IC.

Model LiDAR utilization Architecture Loss for LiDAR

USI3D [18] – completely-shared –
USI3D+IC train completely-shared IC
IID-LI [20] train&infer completely-shared IC

USI3D+ICIN train&infer completely-shared ICIN
LIET+IC train partially-shared ICIN

LIET train partially-shared AA

Table 4. Summary of LiDAR-intensity utilization, model architec-
ture, and LiDAR-intensity related loss for intermediate models in-
cluding USI3D, USI3D+IC, IID-LI, USI3D+ICIN, and LIET+IC,
and LIET in Fig. 8.

module densifies the LiDAR intensity based on deep image
prior [25] since the sparsity of LiDAR intensity deteriorates
the IID quality. IID-LI has notably enhanced IID quality
for the real-world data by utilizing LiDAR intensity, how-
ever, IID-LI has restricted applicability due to the need for
LiDAR intensity even during inference.

In some cases, IID-LI degrades the image quality of
inferred albedo. In the NTT-IID dataset [20], a part of
LiDAR intensity is misaligned with the image as shown
in Fig. 10 (a) and (b), due to the difficulty of precisely cal-
ibrating between the camera and LiDAR. IID-LI processes
the image and LiDAR intensity simultaneously by one en-
coder in such a misaligned sample during inference pro-
cess. As shown in Fig. 10 (middle), the precisely aligned
region of the image quality is maintained in the inferred
albedo. Since the misalignment is limited to a portion of
the entire training data, the image quality is not degraded
for use in training. Conversely, the image quality of the mis-
aligned region is degraded in the inferred albedo as shown
in Fig. 10 (bottom), when the data for inference includes
the misaligned region. Consequently, the architecture of
the completely-shared model may result in image quality
degradation for misalignment data. To address this issue,
LIET is a partially-shared model that accepts an image and
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Figure 9. Cross domain translation model in (a) USI3D, (b) IID-
LI, and (c) LIET. (a) USI3D infer albedo xRI and shade xSI from
an input image xI, through content encoder Ec

I and style encoder
Ep

I . The albedo style pRI and shade style pSI are derived from
image style pI and mapping function fI. (b) IID-LI substitutes the
input of USI3D from an image into four-channel data including
both an image and its corresponding LiDAR intensity. (c) LIET
utilized an image for image-translation branch and LiDAR inten-
sity for LiDAR intensity translation branch. This two-branch ar-
chitecture realizes the single image inference while an image plus
LiDAR intensity training.

LiDAR intensity individually using a different specific en-
coder but processes them together in specific components to
learn shared representations.

B.3. Ablation study for model architecture

Initially, we perform an ablation study for the model ar-
chitecture depicted in Fig. 8. The evaluation results for IID
quality is described in Tab. 5 and Fig. 11.

USI3D+IC. USI3D+IC is evaluated to verify the contribu-
tion of IC loss. The inference process in USI3D+IC only
employs a single image, while the LiDAR intensity is used
for loss calculation during training. Furthermore, utiliz-
ing LiDAR intensity during loss calculation produces better
IID quality than USI3D. Consequently, though USI3D+IC
achieves single-image input and improves the inferred im-

Figure 10. Example of (a) input image xi, (b) LiDAR intensity
xl, (c) densified LiDAR intensity by LID module, (d) albedo xri

inferred from xi by IID-LI. The whole images (top row), cropped
images for the precisely aligned region (middle), and cropped im-
ages for the misaligned region (bottom). In the precisely aligned
region between the input image xi and its corresponding LiDAR
intensity xl, the albedo xri maintains the same image quality as
the input image xi. However, the image quality of the misaligned
region is degraded due to the four-channel inputs.

Method F-score(↑) WHDR(↓) Precision(↑) Recall(↑)

USI3D [18] 0.454 0.422 0.539 0.500
USI3D+IC 0.516 0.423 0.561 0.511
IID-LI [20] 0.602 0.353 0.625 0.596

USI3D+ICIN 0.567 0.408 0.569 0.569
LIET+IC 0.602 0.377 0.606 0.606

LIET+MMF 0.583 0.383 0.592 0.578
LIET 0.607 0.340 0.649 0.601

Table 5. Ablation study for USI3D, USI3D+IC, IID-LI,
USI3D+ICIN, LIET+IC, LIET+MMF, and LIET in Fig. 8, in terms
of IID quality.

age quality, the IID quality of USI3D+IC is inferior to that
of LIET due to the lack of effective LiDAR-intensity uti-
lization.

USI3D+ICIN. Since the distribution of LiDAR intensity
varies across samples, features are well-trained by apply-
ing instance normalization rather than by scaling uniformly
across all samples. Instance normalization improves the IID
quality while keeping the inferred image quality. However,
the IID quality still has not reached the level of LIET.

LIET+IC. To extract features of LiDAR intensity more ef-
fectively, the LiDAR-encoder path and ILC path are imple-
mented to USI3D+ICIN, and LIET+IC is defined. Conse-
quently, the IID quality is improved and almost reached the
level of LIET. However, the inferred albedo luminance may
be unnatural on the chromatic material surface with a di-
rect comparison in IC loss. Thus, we introduce an albedo



Figure 11. Visual results for an ablation study. The compared models include USI3D, USI3D+IC, IID-LI, USI3D+ICIN, LIET+IC,
LIET+MMF, and LIET in Fig. 8.

Method F-score(↑) WHDR(↓) Precision(↑) Recall(↑)

LIET (Ours) 0.607 0.340 0.649 0.601
w/o Lphy 0.465 0.524 0.489 0.490
w/o LAA 0.437 0.473 0.497 0.476

w/o LVGG 0.558 0.398 0.583 0.551
w/o LKLD 0.579 0.379 0.599 0.573
heavy Lphy 0.581 0.380 0.598 0.576
heavy LAA 0.529 0.458 0.528 0.539

heavy LKLD 0.609 0.354 0.626 0.600
heavy LVGG 0.489 0.488 0.489 0.490

Table 6. Ablation study for each loss in terms of IID quality in-
cluding Ladv [8], Lphy [18], LAA, LVGG [11], and LKLD.

aligning loss that aligns the gray-scale albedo inferred from
a single image to that from its corresponding LiDAR inten-
sity.

LIET+MMF. (Q5) Following the base model USI3D, LIET
employs a single mapping function fI. However, we verify
the effect of multiple mapping functions by replacing fI into
fRI, fSI, fLI.

C. Effect of smoothing loss
Smoothing loss is not implemented in LIET, despite

USI3D [18] and IID-LI [20] utilizing it to improve IID qual-
ity. Thus, this section describes the effect of smoothing
loss for IID quality and IQA, by removing and adding the
smooth loss for USI3D [18], IID-LI [20], and LIET 1. As
a result, for both USI3D and IID-LI, eliminating smooth-
ing loss improves the image quality of the inferred albedos
as shown in Tab. 7, since the blurring by smoothing loss

1USI3D with smooth loss, IID-LI with smooth loss, and LIET without
smooth loss are marked with a double asterisk (∗∗) since these models are
original

is reduced. On the other hand, variation caused by cast
shadows in the albedo was reduced by smoothing, hence,
IID quality degrades without smoothing loss. Conversely,
the albedo inferred from LiDAR intensity has less variabil-
ity derived from cast shadows, hence the variation in the
albedo inferred from the image has already reduced due to
albedo-alignment loss in LIET. Thus, LIET achieves albedo
local flatness without using smoothing loss, which keeps the
IQA closely aligned with the input image. Adding further
smoothing only degrades IQA and does not improve IID
quality.

D. Loss effectiveness
In LIET, we calculate eight losses including Limg, Lsty,

Lcnt [10], Ladv [8], Lphy [18], LAA, LVGG [11], and
LKLD. These losses are divided into two types, essen-
tial losses and extra losses. The essential losses includ-
ing Limg,Lsty,Lcnt, and Ladv are necessary for stable
model training. Additionally, the extra losses including
Lphy,LAA,LVGG, and LKLD are used for improving IID
quality. For the training process to proceed well, it is help-
ful to initially set essential losses to a certain appropriate
value. Subsequently, Lphy is set to reach consistency be-
tween the inferred albedo and shade. Next, LAA is added
to enhance the IID quality. To keep the color of the input
image in the inferred albedo, LVGG should be added after
LAA. Finally, LKLD is used to improve IID quality and im-
age quality. This section describes details of the effect of
each loss. Especially, the effect is experimentally verified
for extra loss as shown in Tab. 6 and Fig. 12.
Image reconstruction loss Limg. Initially, the input images
should be reconstructed after passing through the within-
domain reconstruction process, hence image reconstruction
loss Limg is utilized in LIET to extract features. When the
weight of the image reconstruction loss is low, feature ex-



Model Lsmooth IID quality metrics IQA metrics

F-score(↑) WHDR(↓) Precision(↑) Recall(↑) MANIQA(↑) TReS(↑) MUSIQ(↑)

USI3D [18] 0.444 0.427 0.540 0.502 0.629 67.2 52.6
USI3D∗∗ [18] ✓ 0.454 0.422 0.539 0.500 0.492 53.2 40.1
IID-LI [20] 0.570 0.389 0.581 0.565 0.522 80.9 56.4

IID-LI∗∗ [20] ✓ 0.602 0.353 0.625 0.596 0.461 55.5 43.5
LIET∗∗ (Ours) 0.607 0.340 0.649 0.601 0.570 75.1 56.3
LIET (Ours) ✓ 0.593 0.368 0.634 0.583 0.556 69.5 50.1

Table 7. Effect of smoothing loss Lsmooth in IID quality and IQA with the NTT-IID dataset [20]. Smoothing loss improves the IID quality
for USI3D and IID-LI, while degrading image quality due to its blurring effect. LIET has already achieved albedo local flatness, hence
adding smoothing loss will not improve the IID quality.

traction becomes less effective, making the inferred albedo
and shade tend to be blurred. On the other hand, increasing
the weight up to 10 times does not have much effect.

Style reconstruction loss Lsty and content code recon-
struction loss Lcnt. Since the reconstructed images should
maintain their styles and contents, style reconstruction loss
Lsty and content code reconstruction loss Lcnt are utilized.
These losses are relatively sensitive to parameter weights,
and training does not proceed well with inappropriate val-
ues.

Adversarial loss Ladv. the adversarial loss Ladv [8] is
defined to ensure that the image inferred through cross-
domain translation aligns with the distribution of the target
domain. When the weight of adversarial loss is increased,
the inferred albedo is more likely to be influenced by the
dataset trend in the albedo domain. In the free supervision
from video games (FSVG) dataset [13] used in this study,
most of the roads in albedo are black, hence the roads in the
inferred albedo are more likely to be black. On the other
hand, when the weight of adversarial loss is decreased, xri

and xsi tend to value 1.0 in all pixel and xi, respectively, due
to the losses such as Lphy and LAA. Physical loss Lphy.
Physical loss is calculated to maintain consistency between
the inferred albedo and shade, and is the distance between
the input image and the product of the inferred albedo and
shade. The inferred albedo tends to be dark and blurred
without the physical loss as shown in Fig. 12-(top) since
the dark and blurred inference shows the lower loss value in
Limg,Lsty and Lcnt. On the other hand, shadows are more
likely to remain in inferred albedo with heavy physical loss
weight to strictly match the input image with the product of
the inferred albedo and shade as shown in Fig. 12-(bottom).

Albedo aligning loss LAA. To improve the IID quality, we
propose albedo-alignment loss LAA, aligning the gray-scale
albedo from an image to that inferred from its correspond-
ing LiDAR intensity. Cast shadows tend to remain with-
out albedo aligning loss. On the other hand, increasing the
weight up to 10 times blurs the inferred albedo as shown
in Fig. 12.

VGG loss LVGG. To preserve the object edges and colors
of the input image, the distance between the input image
and the inferred albedo within the VGG feature space is
computed [4, 22, 26] for the VGG loss LVGG [11]. Con-
sequently, the object color in translated image is not consis-
tent without VGG loss, while the inferred albedo is strongly
blurred with large weight as shown in Fig. 12.

KLD loss LKLD. The Kullback-Leibler divergence (KLD)
loss LKLD aligns the distribution of style codes from
within-domain reconstruction and from the mapping mod-
ule. As the KLD loss helps to extract style code features,
KLD loss should be adjusted at the end to improve IID qual-
ity or inferred-albedo quality.

E. Implementation details
E.1. Dataset

In this paper, we utilize the NTT-IID dataset [20] for
RGB images, LiDAR intensity, and annotations. Addition-
ally, we also utilize FSVG dataset [13] for albedo and shade
domains.

NTT-IID dataset. NTT-IID dataset was collected by a mo-
bile mapping system (MMS) with cameras and LiDAR in
Japan. To measure the precise position and direction, global
navigation satellite system (GNSS) and an inertial measure-
ment unit (IMU) were used. ZF profiler was utilized as a
LiDAR, which has 0.0009 degree angular resolution and a
maximum range of 120 meters. For IID annotation, they
extracted 110 samples and performed Poisson-disk sam-
pling [2]. These sample points were annotated for relative
intensity in albedo based on human judgements, and a total
number of the annotation is 12,626 in NTT-IID dataset.

FSVG dataset. FSVG dataset prepares synthetic rendered
images and its corresponding albedos in outdoor scene.
Thus, shades were calculated by the pixel quotient of each
image and albedo due to the lack of shade data. Since un-
supervised learning was targeted, 10000 samples each of
albedo and shade were extracted from the FSVG dataset to
eliminate duplication of albedo and shade. In this paper, we
employ the same albedo and shade samples as those used in



Figure 12. Visual results for each loss effectiveness. Examples of (a) input image and (b) albedo from input image by LIET are shown.
The verified loss includes (c) Lphy [18], (d) LAA, (e) LVGG [11], and (f) LKLD. The inferred albedos without each loss (top), and with
ten times the weight according to each loss (bottom).

Dataset PLCC SROCC

LIVE [21] MANIQA [27] MANIQA [27]
CSIQ [14] MANIQA [27] MANIQA [27]

TID2013 [19] MANIQA [27] MANIQA [27]
KADID [17] MANIQA [27] MANIQA [27]
CLIVE [6] HyperIQA [23] DBCNN [29]
KonIQ [9] TReS [7] MUSIQ [12]

LIVEFB [28] TReS [7] TReS [7]

Table 8. List of major IQA datasets and the best evaluation models
for each dataset in PLCC and SROCC.

IID-LI [20] for fair comparison.

E.2. Network implementation

LIET is implemented based on USI3D [18]2. The style
code encoder Es

X, content code encoder Ec
X, generator GX,

and discriminator DX, (X ∈ I, L,R, S), are implemented
with the same model structures and parameters as USI3D.
Initially, we added generator for LiDAR intensity, and dis-
criminators for image and LiDAR intensity with the same
architecture of above models. Subsequently, the channel of
multi-layer perceptron in mapping module was expanded
from two channels to three channels for inferring LiDAR
intensity as well as albedo and shade from an image. Next,
the LiDAR intensity inferring path from an image was im-
plemented. Additionally, we prepared a model that infers
albedo, shade, and image from LiDAR intensity with ex-
actly the same structure as the model that infers albedo,
shade, and LiDAR intensity from image. The albedo align-
ing loss is implemented with gray scale and instance nor-
malization. For stop gradient, ”detach” function was used
for the inferred albedo from LiDAR intensity. Finally, VGG

2GitHub page for USI3D (https://github.com/DreamtaleCore/USI3D.git)

loss was implemented following MUNIT [10]3.

E.3. IQA metrics

In this section, we describe the decision process of im-
age quality assessment (IQA) metrics. Initially, we con-
ducted a comprehensive survey across seven prominent
IQA datasets: LIVE [21], CSIQ [14], TID2013 [19], KA-
DID [17], CLIVE [6], KonIQ [9], LIVEFB [28]. Subse-
quently, we identified the best performing IQA models for
each dataset based on Pearson’s linear correlation coeffi-
cient (PLCC) and Spearman’s rankorder correlation coef-
ficient (SROCC) as shown in Tab. 8. Consequently, we
employed the following IQA models by using pyIQA [3]:
MANIQA [27], TReS [7], MUSIQ [12], HyperIQA [23],
DBCNN [29].

E.4. IID metrics

This section describes the IID quality assessment met-
rics. Typically, IID quality for actual measurement datasets
is evaluated by the degree of agreement with human-judged
annotation. As annotations, sparse points are initially ex-
tracted from the test image by Poisson sampling. Then, two
neighboring points are selected from the sampled points,
and the annotators judge the point to be darker in case the
test image is albedo. The decision is based on the majority
vote, and the confidence level of the decision is calculated
based on the agreement rate. This operation is repeated for
all neighboring points. The total number of annotations is
12,626 in NTT-IID dataset. To quantify the IID quality, for
albedo inferred from the image, two neighboring points that
have already been annotated are picked up, and the lumi-

3GitHub page for MUNIT (https://github.com/NVlabs/MUNIT.git)

https://github.com/DreamtaleCore/USI3D
https://github.com/NVlabs/MUNIT.git


Figure 13. Examples of inferring shades obtained from various existing models and LIET (Ours) with NTT-IID dataset [20]. The compared
models include Revisiting [5], IIDWW [16], UidSequence [15], USI3D [18], and IID-LI [20].

nance between the two points is compared on a gray scale.

(Ĵ) =


D if RL/RD > 1 + δ

L if RD/RL > 1 + δ

E else.

(2)

RL and RD denote lighter and darker points of annotated
points. The threshold is set to δ = 0.1, as the existing pa-
pers [1, 20]. Finally, IID quality is quantitatively evaluated
by comparing the estimation results with human-judged an-
notation.

We computed the macro average of the three-class clas-
sification with confidence-level weighting. Annotation bias
towards “same intensity” in NTT-IID dataset favors flat im-
ages in accuracy and precision, but the bias is less effective
in F-score, recall, and random sampling assessments.

F. Shades inference

In this section, we describe the shadow inference results
obtained from various existing models and LIET with the
NTT-IID dataset [20]. The compared models include Re-
visiting [5], IIDWW [16], UidSequence [15], USI3D [18],
and IID-LI [20]. As shown in Fig. 13, the shadow inference
results from each model are almost the same. On the other
hand, the shadow inferred by USI3D is slightly whitish.
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