
Supplementary Material
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Networks

This document presents the supplementary materials omitted from the main paper due to space
limitations.

1 Implementation Details

Hardware and environment. Our work was conducted on an open-source Ubuntu workstation
(version 20.04.5), using Python 3.8 and PyTorch as the primary programming framework for deep
learning. Experiments were performed on a GPU, NVIDIA RTX 3090, with 24GB of memory.
We use the CycleGAN, RegGAN, NICEGAN, UNIT, and shortest path regularization implementa-
tions from https://github.com/Kid-Liet/Reg-GAN and https://github.com/Mid-Push/santa. For all
experiments, we set the initial network width 𝑁𝑊𝑖 to 0.1, the final network width 𝑁𝑊 𝑓 to 0.7, and
the growing frequency Δ𝑡 to 1000. We use NVIDIA RTX3090 GPU (24GB) for all experiments.
Evaluation metrics. We use widely adopted three evaluation metrics as follows: Normalized Mean
Absolute Error (NMAE)(↓) which measures the normalized average deviation between true and
predicted values. Lower NMAE indicates better data accuracy. Peak Signal-to-Noise Ratio (PSNR)(↑)
which compares signal to noise in reconstructed images, vital for high-detail datasets like MRI
scans. Structural Similarity Index Measure (SSIM) (↑) it evaluates texture, luminance, and structure
similarities in images, essential for preserving details in medical imaging.
Training details. CycleGAN, RegGAN, NICEGAN, UNIT, and shortest path regularization were
used in our study. We followed the settings of the experiment used in RegGAN. Specifically, all three
models were trained using Adam optimizer with a learning rate 1e-4 and (𝛽1, 𝛽2) = (0.5, 0.999). As
the standard of the CycleGAN-like image-to-image translation model, batch size in all experiments
was set to 1. Coefficients of L𝑎𝑑𝑣 (for CycleGAN), L𝑐𝑦𝑐 (for CycleGAN), L𝑐𝑜𝑟𝑟 (for registration
network in RegGAN), L𝑠𝑚𝑜𝑜𝑡ℎ (for registration network in RegGAN) were set to 1, 10, 20, 10,
respectively. Note that our proposed R-CCL loss shares the same coefficient with L𝑐𝑦𝑐. For full and
10% training dataset experiments, we train each model for 80/400 epochs, which is over 460/230K
iterations while warmup training epoch, gradual growing training epoch, and fine-tuning epoch are
set to 5/50, 35/150, 40/200, respectively.
Noise data simulation. For introducing Gaussian and Speckle noise, we use a Gaussian distribution
with a mean value of 0 and a standard deviation of 0.1. For Salt and Pepper (S&P) noise, the
probability for both salt and pepper disturbances is set at 0.5%.

2 Reconfig-MIT Performance under Various Noise Conditions

We further extend our analysis of Reconfig-MIT by adding different noises to the data. Noise, refers to
unwanted variations or artifacts in the images. These variations can result from the imaging process
itself, patient motion, or differences in imaging equipment. Noise can obscure or distort the relevant
features in the images, making it difficult for a model to learn accurate representations and perform
precise translations. The simulated noises are as follows:

1) Gaussian noise: Add random Gaussian noise to the pixel intensities, simulating sensor noise
or image degradation.

2) Salt and pepper (S&P) noise: Randomly replace a certain percentage of pixels with either
the minimum or maximum intensity value, simulating dead pixels or impulsive noise.

3) Speckle noise: Add multiplicative noise to the images, simulating noise common in
ultrasound imaging.

4) Poisson noise: Modify the pixel intensities according to a Poisson distribution, simulating
photon counting noise in imaging devices.
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Table 1: Comparative results of CycleGAN (C), RegGAN (C+R), and Reconfig-MIT (Gr+R-CCL)
under four different noise conditions, tested on a limited dataset comprising only 10% of the total data.

Models Metrics Noise Gaussian Noise Poisson Noise S&P Noise Speckle
NMAE↓ 0.086 0.087 0.092 0.087

C PSNR↑ 24.369 24.280 23.328 24.102
SSIM↑ 0.790 0.820 0.811 0.707

NMAE↓ 0.085 0.084 0.089 0.085
C+R PSNR↑ 24.452 24.427 23.361 24.607

SSIM↑ 0.790 0.827 0.822 0.792
NMAE↓ 0.085 0.083 0.086 0.083

C+R+Gr+R-CCL PSNR↑ 24.532 24.719 24.032 24.653
SSIM↑ 0.798 0.830 0.830 0.793

These results shown in Table 1 underline the robustness of Reconfig-MIT in handling different
types of noise, including Gaussian, Poisson, S&P, and Speckle, even in scenarios with limited data.
The consistently superior performance of Reconfig-MIT across all metrics affirms its effectiveness
and adaptability in medical image-to-image translation tasks. This emphasizes the potential of
Reconfig-MIT as a valuable tool in clinical applications, especially where image noise is a significant
challenge.
The introduction of S&P noise impacts the entirety of the image. Reconfig-MIT yields the highest
NMAE and lowest PSNR performance compared to the other three types of noise. This is primarily
due to the extremity of S&P noise values, where salt is represented as 1 and pepper as -1. These
values deviate significantly from the original image patterns, posing a challenge for the model to
differentiate them.

3 Performance on Unpaired Setting

Figure 1: The translation results, error maps, and deformation field (D.F.) of CycleGAN (C), RegGAN
(C+R), and Reconfig-MIT (Gr+R-CCL) on unpaired, 10% training dataset with misalignment level
M.1.

The section outlines the performance of CycleGAN, RegGAN, and Reconfig-MIT enhanced with
R-CCL on a uniquely challenging dataset, an unpaired set consisting of only 10% of the original
training data, complicated further with a misalignment level denoted as M.1 (see Figure 1. These
circumstances present significant obstacles for these models, namely handling complex image
transformations and mitigating discrepancies caused by the M.1 level misalignment, all while working
with limited data availability. We carefully examined the translation results, scrutinized error maps,
and analyzed the deformation fields (D.F.) generated by each model.
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4 Performance with Existing GAN for Image-to-Image Translation

Table 2: Integration of Reconfig-MIT (Gr only) with existing GANs architectures, UNIT (U),
Registration Network (R), NICEGAN (N) for 10% training data

Misalignment (M) level Metrics N N+R N+R+Gr U U+R U+R+Gr
NMAE↓ 0.091 0.089 0.088 0.085 0.083 0.081

M.0 PSNR↑ 23.884 23.935 24.177 24.265 24.664 24.935
SSIM↑ 0.824 0.825 0.829 0.828 0.836 0.840

NMAE↓ 0.092 0.090 0.088 0.084 0.080 0.079
M.1 PSNR↑ 23.638 24.076 24.168 24.001 24.782 25.139

SSIM↑ 0.827 0.828 0.830 0.837 0.844 0.848
NMAE↓ 0.090 0.088 0.087 0.089 0.083 0.081

M.5 PSNR↑ 23.241 23.510 23.494 24.147 24.290 24.656
SSIM↑ 0.827 0.830 0.835 0.828 0.839 0.844

The results in Table 2 show the consistent performance of the proposed method (N+R+Gr and
U+R+Gr), including registration and Reconfig-MIT, across all misalignment levels even when the
data is reduced to 10%. This illustrates the method’s robustness to limited data scenarios, which is
crucial in medical image translation applications where data scarcity is a common challenge.
In all cases, the incorporation of registration and Reconfig-MIT improves the metrics (decrease in
NMAE and increase in PSNR and SSIM), demonstrating their effectiveness in preserving image
quality and structural similarity despite data limitations and varying levels of misalignment.
An interesting observation is that the proposed method shows better or comparable performance
(U+R+Gr) when the misalignment level is increased to M.5. This suggests the ability of the
Reconfig-MIT model to produce reliable translations in more challenging conditions.
Overall, these results reinforce the viability of the proposed Reconfig-MIT model and its adaptability
to various misalignment levels and data-limited scenarios in the context of image-to-image translation.
For N+R+Gr, we set the initial density of the model to 0.3 and the final density to 0.9.
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