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A. Ablation studies
To gain deeper insights into our proposed GMM-based

method, we conduct rich ablation studies in the following.
Thereby, we use the OPDA scenario on the VisDA-C dataset
as a representative example. The OPDA scenario effectively
illustrates the challenging trade-off between rejecting new
classes and reliably classifying a subset of known classes,
while the VisDA-C dataset was selected arbitrarily.

A.1. Loss functions

Contribution of each loss: Fig. 1 illustrates the indi-
vidual contributions of the contrastive loss LC and the
KL divergence loss LKLD to the overall performance of
our GMM-based method. Both losses prove to be effec-
tive and significantly enhance the source-only performance
when used independently. Notably, the KL divergence loss
thereby outperforms the contrastive loss, possibly because it
impacts both the classifier and the feature extractor, whereas
the contrastive loss only optimizes the feature extractor.
However, the best results are achieved when combining
both losses.

Comparison between the KL divergence loss and the
entropy loss of COMET: Our proposed KL divergence
loss LKLD serves a similar function as the entropy loss Le

used by COMET [10]. To evaluate their performance, we
compare the original GMM method with a modified ver-
sion where LKLD is replaced by COMET’s entropy loss Le.
The results shown in Fig. 2 indicate that using COMET’s
entropy loss instead of the KL divergence loss leads to a
significant decline in performance. This suggests that the
KL divergence loss is more effective at encouraging confi-
dent predictions for known class samples while also guiding
the model to appropriately handle OOD samples, making it
the better choice for SF-UniDA.

A.2. Hyperparameter sensitivity

To analyze the sensitivity of our GMM-based method
to hyperparameter choices, we vary each hyperparameter
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Figure 1. Results using different combinations of the losses LC

and LKLD for the VisDA-C OPDA scenario.
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Figure 2. Results using COMET’s entropy loss Le compared to
the proposed KL divergence loss LKLD in our GMM method for
the VisDA-C OPDA scenario.

across a broad range around the chosen value while keeping
the others constant. Figs. 3 to 7 show the results. Overall,
our approach proves to be robust against these variations
which indicates that the choice of hyperparameters is not
critical for its success.

Number of dimensions of the reduced feature space:
As shown in Fig. 3, stable performance is maintained when
the number of dimensions FDr of the reduced feature space
is above 48. There is minor degradation at FDr = 48 and
FDr = 32, respectively, before the performance drops sig-
nificantly at FDr = 16. Therefore, the chosen number of
feature dimensions FDr = 64 seems to provide the best
trade-off between performance and memory efficiency.

Rejection rate: Fig. 4 shows that the performance re-
mains nearly constant when varying preject between 25%
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Figure 3. Results for the VisDA-C OPDA scenario using different
numbers of dimensions for the reduced feature space.

25 30 35 40 45 50 55 60 65 70 75
40

50

60

preject in %

H
-s

co
re

in
%

Figure 4. Results for the VisDA-C OPDA scenario using different
rejection rates during pseudo-labeling.
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Figure 5. Results for the VisDA-C OPDA scenario using differ-
ent numbers of batches for the initialization of τk and τu during
pseudo-labeling.

and 75%. However, the performance slightly increases with
a higher rejection rate. Therefore, discarding more samples
during the initialization of τk and τu can be advantageous.

Number of initialization batches: Similar to FDr and
preject, the number of batches Ninit used for initializing τk
and τu does not significantly impact the performance of our
method across a broad range of values, as shown in Fig. 5.
However, a performance degradation is observed for values
smaller than Ninit = 20. Thus, at least 20 batches are nec-
essary for a representative initialization of τk and τu.

Batch size: In Fig. 6, we observe that decreasing the batch
size starting from 128 only leads to a slight decline in per-
formance until a batch size of 16. However, a significant
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Figure 6. Results for the VisDA-C OPDA scenario using different
batch sizes.
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Figure 7. Results for the VisDA-C OPDA scenario using different
exponential decay factors.
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Figure 8. Development of the ratio of samples used for the adap-
tation over the course of an exemplary run of the VisDA-C OPDA
scenario.

performance drop occurs at a batch size of 8, which we sus-
pect is due to the insufficient effectiveness of the initializa-
tion of τk and τu for such a small batch size.

Exponential decay factor: Fig. 7 shows that reducing the
exponential decay factor from α = 1 (no decay) results in
a small improvement until α = 0.99, after which perfor-
mance declines sharply for α ≤ 0.95. Therefore, selecting
α > 0.95 appears to best balance the retention of valuable
past information with the responsiveness to new data.

A.3. Ratio of samples used for adaptation

Fig. 8 illustrates how the percentage of samples used
for adaptation evolves during the course of an exemplary
run. For the first batch, 100%− preject = 50% of samples
are used. During the initialization of τk and τu in the first
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Figure 9. Results for the VisDA-C OPDA scenario using different
metrics for the OOD detection.

Ninit = 30 batches, this percentage remains relatively sta-
ble. Subsequently, it steadily increases on average, appear-
ing to converge towards approx. 85%. This trend demon-
strates the effectiveness of our adaptation method by show-
ing that the pseudo-labeling becomes increasingly confident
over time, leading to fewer samples being discarded due to
uncertainty.

A.4. OOD metric

Besides the entropy of the likelihood I(pi,k), several
other metrics can be used to evaluate the confidence of
a sample belonging to the GMM distribution. These in-
clude the minimum Mahalanobis or Euclidean distance
between the sample and the GMM means in the fea-
ture space [4], GradNorm [3], the maximum prediction
value maxc∈Ys

fc(x
t
i,k), the maximum likelihood value

maxc∈Ys
p(xt

i,k|c; µ̂k(c), Σ̂k(c)), and the entropy of the
prediction I(f(xt

i,k)). Fig. 9 presents a comparison of these
OOD metrics for the VisDA-C OPDA scenario. It can be
observed that the entropy of the likelihood provides the best
result, while the maximum likelihood value performs only
slightly worse. In contrast, all other evaluated OOD metrics
yield significantly lower H-scores. Therefore, the two OOD
metrics rooting on the likelihoods derived from the GMM
prove to be the most robust, further demonstrating the effec-
tiveness of our GMM-based knowledge transfer approach.

A.5. Vision transformer as backbone architecture

Tab. 1 presents the results on the VisDA-C dataset when
the ResNet-50 backbone architecture is replaced with a
Vision Transformer (ViT) [2], specifically the ViT-B/16
model. Its source training follows the same procedure as
that used for the ResNet-50. Qualitatively, the results are
similar to those obtained with the ResNet-50 backbone re-
ported in the main paper. Notably, our proposed GMM-
based method continues to achieve the best performance

Table 1. Results for the VisDA-C dataset using a Vision Trans-
former backbone. The accuracy (in %) is reported for PDA, while
the H-score (in %) is reported for ODA and OPDA. Best results
are in red, second best in blue.

PDA ODA OPDA

Source-only 19.5 26.4 19.4

OWTTT [5] 31.3 54.1 49.9
COMET-P [10] 36.7 40.6 38.8

SHOT-O/P [6] 35.3 48.0 40.7
GLC [8] 9.9 3.4 9.6
GLC++ [9] 10.7 5.3 15.7
LEAD [7] 4.2 8.8 8.8
COMET-F [10] 31.3 39.5 38.6
GMM (Ours) 38.8 56.4 57.0

across all category shifts and therefore proves to also be
effective for ViT-based model architectures.

A.6. Measuring the absolute memory requirement

To validate the theoretical memory consumption analysis
presented in section 3.7 of the main paper and provide ad-
ditional insights, we measure the absolute memory required
for the knowledge transfer across batches of COMET [10],
a memory queue as proposed by [1], and our GMM-based
approach. Additionally, we measure and compare the over-
all peak memory usage of COMET and our GMM-based
method during adaptation, which is crucial for determining
hardware requirements.

First, we consider the VisDA-C OPDA scenario where
the number of source classes is |Ys| = 9. COMET
requires a copy of the ResNet-50-based model to im-
plement the student-teacher architecture, which consumes
94, 098.23KB of memory. Second, in the memory queue,
each prediction vector occupies 2.25KB, and each feature
vector requires 8.00KB, resulting in a total of 10.25KB per
sample. Finally our GMM-based method requires 4.50KB
to store the means µ̂k(c), 288.00KB for the covariance ma-
trices Σ̂k(c) and 0.07KB for the weights sk(c), resulting in
an overall memory consumption of 292.57KB. Therefore,
our GMM-based approach only requires

292.57KB

94, 098.23KB
≈ 0.0031 = 0.31% (1)

of memory compared to COMET. Moreover, starting with a
memory queue size of only⌈

292.57KB

10.25KB

⌉
= 29

the memory queue already consumes more memory than
our proposed GMM-based method.



Next, we consider an arbitrary OPDA scenario of Do-
mainNet where the number of source classes is |Ys| = 200.
Due to the increased number of output neurons, the mem-
ory consumption of the ResNet-50-based model slightly in-
creases to 94, 290.73KB. Regarding the memory queue,
each prediction vector now occupies 50.00KB resulting
in a total of 58.00KB per sample. For the GMM-based
method, the memory requirements increase to 100.00KB
for the means, 6, 400.00KB for the covariance matrices,
and 1.56KB for the weights, totaling 6, 501.56KB. Hence,
in this case, our GMM-based approach uses only

6, 501.56KB

94, 290.73KB
≈ 0.0690 = 6.90% (2)

of the memory compared to COMET. Moreover, now start-
ing from a queue size of⌈

6, 501.56KB

58.00KB

⌉
= 113

the memory queue exceeds the memory usage of our GMM-
based method. Although this value is considerably higher
than for the VisDA-C dataset, it corresponds to significantly
fewer than one sample per source class, which is still insuf-
ficient to enable reliable kNN- or clustering-based pseudo-
labeling.

A similar picture is also observed when measuring the
overall peak memory usage of COMET and our GMM-
based method during each adaptation step. For the VisDA-
C OPDA scenario, COMET’s peak memory usage is nearly
three times higher at 16, 115.05,MB compared to just
5, 792.14,MB for our GMM-based approach. Similarly,
in the DomainNet OPDA scenario, COMET requires more
than twice the memory, with a maximum of 16, 113.88,MB
compared to 6, 954.79,MB for our method. Thus, as ex-
pected, the overall memory footprint of our GMM-based
method is significantly smaller than that of COMET due to
its more memory-efficient knowledge transfer. This reduced
memory usage lowers hardware requirements, making our
approach more suitable for real-world applications, particu-
larly in embedded systems.

B. Discussions
B.1. Potential weaknesses of our method

Our method is based on the assumption that the target
data classes form unimodal Gaussian-distributed clusters in
the feature space. However, this may not always hold true.
Although the contrastive loss encourages this clustering be-
havior, if the pseudo-labels are inaccurate at the beginning
of the adaptation process due to a violation of this assump-
tion, it can result in a slow initial adaptation. In the worst
case, if the pseudo-labels are too inaccurate to trigger effec-
tive clustering, the adaptation may even fail completely. Al-
though we did not encounter such a case in our experiments,

to mitigate this risk, we recommend opting for a higher
rather than lower initial ratio of left out samples preject.

A second potential failure case could occur with a highly
imbalanced target dataset that contains only few samples of
unknown classes. In this situation, since our KL divergence
loss maximizes the divergence between the classifier out-
put and a uniform distribution for samples pseudo-labeled
as a known class, it may cause the classifier to converge
to a trivial solution, i.e. always predicting the same class
with high confidence. To prevent this from happening, in
such a case, it might be advantageous to instead minimize
the KL divergence between the prediction vector and the
one-hot encoded pseudo-label for samples pseudo-labeled
as a known class. By doing so, and maintaining a uniform
pseudo-label for the unknown class, the KL divergence loss
effectively becomes a cross-entropy loss. Nevertheless, also
this case has never occurred during our experiments.

B.1.1 Difference between online and offline setting

When comparing the results from our online scenario with
those achieved in offline SF-UniDA, like the results pro-
vided by GLC [8], GLC++ [9], and LEAD [7], a notable
difference is evident. In the offline scenario significantly
higher scores are achieved compared to online. For in-
stance, the performance gap in the DomainNet OPDA sce-
nario (considering only the domains painting, real, and
sketch) is around 5%, while it extends to approximately
15% in the VisDA-C OPDA scenario.

We believe that two main factors contribute to this dis-
crepancy. First, offline methods have the advantage of being
able to access all target data at once, which allows for more
thorough adaptation strategies, such as kNN, which are not
feasible in the online setting. Second, in offline scenarios,
adaptation and prediction are separate steps, meaning the
prediction only starts once the adaptation has been finished.
This leads to an improved performance right from the start
of the prediction. In contrast, in the online setting predic-
tion and adaptation need to be performed in parallel which
means that the prediction performance is initially equal to
the source-only performance and only improves gradually.
This difference in the adaptation process naturally reflects
on the average performance scores.
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