
A. Related Works
Machine unlearning approaches are designed to expunge information pertaining to a particular subset of training data from

the model weights, while maintaining the model performance on the rest of the data. The concept of machine unlearning was
first introduced in [3] as an efficient forgetting algorithm tailored for statistical query learning. Bourtoule et al. [2] proposed a
framework that shards data into multiple models, enabling precise unlearning of specific data segments. This method ensures
complete forgetting but incurs significant storage costs due to the need to maintain multiple models or gradients. In the context
of model interpretability, Koh et al. [20] provided a Hessian-based method for estimating the influence of a training point on
the model predictions. Guo et al. [14] introduced ✏-certified removal, which applied differential privacy [7] to certify the data
removal process, and proposed a method for removing information from model weights in convex problems using Newton’s
method. Neel et al. [27] proposed a gradient descent-based method for data deletion in convex settings, providing theoretical
guarantees for multiple forgetting requests. Although these approaches have been proven effective, they are not fully suitable
for deep neural network due to its non-convex nature.

Recently, there have been numerous attempts to address machine unlearning in deep neural networks. Golatkar et al. [10,11]
took an information-theoretic approach to eliminate data-specific information from weights, leveraging the Neural Tangent
Kernel (NTK) theory [18]. Fisher forgetting [11] utilized the Fisher information matrix to identify the optimal noise level
required to effectively eliminate the influence of samples designated for unlearning. Liu et al. [24] presented that increasing
model sparsity can boost effective unlearning, and proposed a unlearning framework that utilizes pruning methods [25] on
top of existing unlearning approaches. Chundawat et al. [6] used a teacher-student distillation framework, where the student
model selectively receives knowledge from both effective and ineffective teachers, facilitating targeted forgetting. Similarly,
Kurmanji et al. [22] employed a teacher-student network but simplify the approach by using only a single teacher. Our
self-distillation loss shares some similarities with these distillation-based approaches, but it offers clear advantages by targeting
an equilibrium, resulting in more stable training. Unlike previous unlearning works, our primary focus is on latent feature
representation space, aimed at effectively mitigating the information leakage problem associated with machine unlearning.

On the other hand, several works have proposed modifications to the original model training to make the resulting model
more amenable to unlearning. Thudi et al. [33] introduced a regularizer to reduce the verification error, which approximates
the distance between the unlearned model and a retrained model, aiming to facilitate easier unlearning in the future. Zhang et

al. [38] presented a training process that quantizes gradients and applies randomized smoothing, which is designed to make
unlearning unnecessary in the future and comes with certifications under some conditions. However, these approaches assumes
that the deletion request does not cause significant changes in data distribution, which is not applicable to practical scenarios
such as class unlearning.

B. Implementation details
NMI To calculate the normalized mutual information (NMI), we initially perform k-means clustering on dataset D based on
feature representations, with k equal to the number of classes, Y . Let K 2 {1, ..., Y }|D| represent the cluster assignments
for D, and X 2 {0, 1}|D| indicate whether each sample belongs to the forget set. NMI is then computed using the formula

I(K,X)
min(H(K),H(X)) , where I(·, ·) is the mutual information and H(·) denotes the entropy.

F1 score To measure the F1 score, we utilize the same k-means clustering. We calculate the recall and precision for each
cluster regarding Df . Precision is defined as the proportion of cluster examples that belong to Df , while recall is the proportion
of Df assigned to the cluster. The F1 score is computed by the harmonic mean of recall and precision. We report the final F1
score for the cluster that yields the highest value, indicating the most relevant cluster to Df .

Membership inference attack (MIA) success rate Following prior work [24], we employ a confidence-based MIA predictor.
Given the unlearned model, ✓u, and the datasets, Df , Dr, and Dtest, we first calculate the confidence, denoted as q(·), for
each example in the datasets. Then, we train a logistic regression model, h(·), using Dr and Dtest, which aims to predict
h(q(x)) = 1 for x 2 Dr and h(q(x)) = 0 for x 2 Dtest. We measure the MIA success rate by averaging h(q(x)) for all
x 2 Df, where the lower values indicate successful unlearning.

Linear probing Given the target model ✓, linear probing protocol involves training a new linear classifier on top of its frozen
feature extractor. For evaluating LP(Dr), the linear classifier is trained with Dr, and we report the performance on the Dr to



Table A. Unlearning results on the CIFAR-10 dataset averaging over five different configurations.

Method DA LP(Df ) LP(Dr) F1 NMI Acc(Df ) Acc(Dr) MIA

Original 0.34 92.9 92.5 0.99 0.96 92.9 92.0 0.91
Retrained 0.79 65.4 92.1 0.54 0.31 0.0 92.2 0.37

FT 0.51 88.3 92.8 0.80 0.65 40.2 92.8 0.21
FT (classifier only) 0.34 92.9 92.5 0.99 0.96 0.0 92.8 0.00
NegGrad 0.55 66.8 90.2 0.51 0.23 3.7 85.2 0.63
Fisher 0.37 88.5 90.2 0.97 0.89 8.4 88.6 0.01
SCRUB 0.41 74.7 92.0 0.76 0.59 50.2 91.8 0.46
EU-k 0.73 68.1 90.7 0.73 0.46 0.0 90.9 0.19
CF-k 0.60 81.3 92.1 0.66 0.43 13.7 92.1 0.15
MUDA (Ours) 0.82 66.4 92.3 0.54 0.32 0.0 92.3 0.29

Table B. Unlearning results on the CIFAR-100 dataset averaging over five different configurations.

Method DA LP(Df ) LP(Dr) F1 NMI Acc(Df ) Acc(Dr) MIA

Original 0.50 75.0 72.1 0.73 0.64 76.8 72.3 0.91
Retrained 0.74 50.8 71.2 0.33 0.19 0.0 71.4 0.18

FT 0.58 70.2 70.7 0.71 0.61 44.0 71.2 0.08
FT (classifier only) 0.54 74.2 70.5 0.99 0.97 0.0 66.3 0.01
NegGrad 0.55 52.0 71.3 0.73 0.60 20.0 71.2 0.15
Fisher 0.59 67.0 62.7 0.87 0.78 0.0 62.3 0.06
SCRUB 0.60 60.0 70.1 0.68 0.57 32.0 70.3 0.32
EU-k 0.70 35.2 37.1 0.26 0.14 0.0 28.0 0.45
CF-k 0.54 72.6 69.4 0.93 0.90 70.8 69.5 0.81
MUDA (Ours) 0.73 37.0 71.1 0.34 0.21 0.0 71.1 0.15

focus on the discriminability of the retain samples. To measure LP(Df ), we train a linear classifier using D = Dr [Df , and
report the performance on Df , which is for evaluating the identifiability of Df .

Hyperparameters We tune the learning rate for all compared approaches within {0.1, 0.01, 10�3
, 10�4}, except for the

NegGrad, for which we use {10�4
, 10�5}. For EU-k and CF-k, we follow the same k with prior work [9], updating the conv4

and fc layers of ResNet while keeping the other layers frozen. For SCRUB, we follow the original paper’s code implementation
with ↵ = 0.001 and � = 0.99. For Fisher forgetting, we use the code implementation provided in [11]. We set 200 training
iterations for our framework.

C. Additional experimental results
C.1. Results on existing evaluation metrics

To provide a comprehensive view, we evaluate the unlearning algorithms with existing measurements, including Acc(Df ),
Acc(Dr), and the MIA score. Table A, B, and C present the overall experimental results.

D. Discussion
D.1. Random sample unlearning

While most existing works have been evaluated under a random sample unlearning scenario, we did not explicitly address
this setting. We argue that if the forget set is randomly drawn from the training set, these random forget samples do not provide
meaningful additional information beyond the remaining samples, implying no information needs to be removed.

To clarify this, assume that both Dold and Dnew follow the same distribution as D. Given an old model trained on Dold, we
consider a incremental learning scenario involving Dnew. Since Dnew follows the same distribution as Dold, it behaves similar



Table C. Unlearning results on the Tiny-ImageNet dataset.

Method DA LP(Df ) LP(Dr) F1 NMI Acc(Df ) Acc(Dr) MIA

Original 0.59 47.6 58.0 0.96 0.92 51.2 59.1 0.89
Retrained 0.73 24.0 58.0 0.19 0.09 0.0 59.1 0.14

FT 0.60 45.6 56.2 0.66 0.55 44.8 57.3 0.78
FT (classifier only) 0.61 47.6 58.0 0.66 0.55 0.0 41.2 0.18
NegGrad 0.74 29.6 55.1 0.22 0.12 0.0 51.8 0.30
Fisher 0.66 34.8 47.0 0.39 0.25 0.0 43.1 0.20
SCRUB 0.64 35.6 55.8 0.52 0.40 38.4 56.2 0.50
EU-k 0.77 12.8 19.1 0.11 0.04 0.0 11.1 0.42
CF-k 0.63 40.8 52.7 0.48 0.33 31.2 51.6 0.47
MUDA (Ours) 0.70 26.0 57.4 0.21 0.10 0.0 58.1 0.03

as Dold and the decision boundary would not change significantly during incremental learning. As there are no substantial
changes caused by Dnew, unlearning Dnew should rarely impact the model parameters.

Furthermore, if a user requests a random subset of samples to be forgotten, it is unclear whether the request refer to the
specific selected samples or the entire (sub)class corresponding to those samples. Therefore, we limit the unlearning scenario
to cases where the forget set contains meaningful semantics, such as a class, subclass, or group.

Note that the experimental results on defending backdoor attack in Section 5.3 implicitly address random sample unlearning,
where the forget set is a random subset of training set. The difference is that in each application, the forget samples share a
common semantic, e.g., containing a black patch or label noise.

D.2. Exploiting forget set accuracy and MIA
The forget set accuracy and MIA can be easily exploited with trivial fine-tuning or post-processing techniques, which

render them unreliable for adequately evaluating the unlearned model. Below we provide examples of such trivial methods
that can easily exploit/circumvent each metric.

Forget set accuracy Achieving 0% accuracy on the forget set can be accomplished by simply setting the bias value of the
corresponding class in the classifier to �1, ensuring that no samples are predicted for that class. This implies that merely
matching the accuracy on the forget set does not necessarily indicate successful unlearning.

MIA success rate Since MIA leverages model outputs, such as confidence scores or entropy [32,36], to infer the presence of
a sample in the training dataset, it depends heavily on the model overfitting to the dataset. The underlying assumption is that a
model will produce more confident predictions for samples it has seen during training compared to unseen data. Hence, if
models undergo uncertainty calibration via fine-tuning or post-processing techniques, the MIA may significantly overestimate
the effectiveness of unlearning. To empirically support our claim, we fix the feature extractor of ✓o and only fine-tune its
final linear classifier using a calibration loss [29]. We observe that simple post-processing calibration with minimal training
significantly lowers the MIA score from 0.91 to 0.02 on CIFAR-10, despite no particular efforts to unlearn.

D.3. Limitations
Our paper, like previous studies, shares a common limitation: the lack of a theoretical guarantee regarding unlearning.

Nonetheless, our framework introduces a unique approach by focusing on feature representation, which supplements previous
research efforts by offering a novel and thorough analysis of machine unlearning. Additionally, our dimensional alignment
loss requires some amount of retain samples, but we have shown that only a minimal number of these samples are necessary to
attain effective unlearning performance.

D.4. Broader impact
By enabling the effective removal of data from machine learning models without requiring complete retraining, machine

unlearning helps organizations comply with privacy laws such as GDPR and the CCPA, which mandate the right to be forgotten.
This is crucial in situations where users withdraw their consent for data use or when data must be deleted for legal reasons.



Moreover, machine unlearning reduces the risks associated with data breaches, as it ensures sensitive information can be
dynamically and reliably erased from models, thus limiting potential misuse. Additionally, this research can lead to more
sustainable AI practices by reducing the computational and environmental costs associated with retraining models from scratch.
This leads to more ethical AI systems by promoting transparency, user trust, and the responsible use of data.
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