
Pre-trained Multiple Latent Variable Generative Models are good defenders
against Adversarial Attacks

Supplementary Material

In completion of the main paper, we provide additional
information regarding experimental content and qualitative
results. This Supplementay Material is organized as fol-
lows: Appendix A contains the pseudocode of the purifica-
tion procedure; Appendix B a qualitative analysis of images
generated following the learned set of α hyperparameters;
Appendix C experimental details that can help in reproduc-
ing the results; Appendix D the ablation studies and details
on preprocessing operations; Appendix E shows some quali-
tative purification examples of our method, in comparison
to A-VAE [78] and ND-VAE [28]; and Appendix F contains
additional defense results on the Autoattack method [14].

A. Pseudocode
In Algorithm 1 we show the pseudocode for the purifica-

tion procedure, as explained in Section 3 of the main paper.

Algorithm 1 Purification Procedure

Require: Input Image x; Preprocessing Function P; En-
coder and MLVGM E ,G; Generator’s Prior N ; Hyper-
parameters {α0, α1, . . . , αN−1}.

1: xp = P(x) ▷ optional preprocessing
2: ze

0, z
e
1, . . . , z

e
N−1 = E(xp) ▷ encoding

3: for i = 0 to N − 1 do
4: zs

i ∼ N ▷ sampling
5: zi = (1− αi)z

e
i + αiz

s
i ▷ interpolation

6: end for
7: x̂ = G(z0, z1, . . . , zN−1) ▷ decoding
8: return Purified Image x̂

B. Qualitative Analysis of Bayesian Optimiza-
tion

In Figures 3 to 5 (b) of the main paper we show the
hyperparameter values learned by Bayesian Optimization,
compared to the linear and cosine case. For the identity clas-
sification task, the combination is monotonic and matches
the idea that MLVGMs represent features in global-to-local
manner, with class relevant information mainly contained
in the first latent levels, and gradually decreasing. However,
for the coarse-grained tasks (gender and car types classifica-
tion), the learned combinations tend to assign low α values
to specific intermediate latents. These are i = 2, 5, 6 and
i = 1, 2, 4, 5, 9, 13 for the two tasks, respectively. In other
terms, Bayesian Optimization suggests to maintain the orig-
inal information of these latent levels, and to discard and

re-sample the remaining codes. This means that the optimiza-
tion process defines two types of codes: “class codes” which
should maintain original information, and “detail codes” that
can be re-sampled. In Figures 9 and 10 we qualitatively
verify this aspect, by mixing the class and detail codes given
by BO of two samples (A and B), of different classes. The
second and third column in the figures shows what happens
when mixing class codes of one sample with detail codes
of the other. As visible, it is true that class-relevant and ir-
relevant information is disentangled, allowing to change the
details of an image without altering its label. This qualitative
analysis suggests that Bayesian Optimization is effective
in distinguishing class-relevant features, assigning low α
values to the corresponding latent levels. Furthermore, the
visualization supports the hypothesis made in the main pa-
per: in coarse-grained classification tasks, the class-relevant
information is contained in a few, intermediate latents.

C. Experimental Details
Obtaining the pre-trained MLVGMs. For the Celeb-A
HQ and Cars tasks we use the official StyleGan-2 check-
points, coupled with the corresponding encoders. The public
repositories are https://github.com/omertov/encoder4editing
for faces and https://github.com/sapphire497/style-
transformer for cars. These allow to download the
pre-trained Autoencoders, based on StyleGan-2.
Regarding NVAE, we train our own model on the Celeb-A
dataset at resolution 64 × 64. The model has 3 scales of
8 groups, for a total of 24 latent variables. We trained the
model for 600 epochs, with a cumulative batch size of 256.
The learning rate has been decayed from 1e− 3 to 5e− 4.
The total number of parameters is 705.678 M. The pre-
trained model, code and complete training configuration are
available at https://github.com/SerezD/NVAE-from-scratch.

Creating the Datasets. The instructions on how to
download the gender classification dataset are available
at: https://github.com/ndb796/CelebA-HQ-Face-Identity-
and-Attributes-Recognition-PyTorch. For Celeba-64 iden-
tity classification, we obtain the original data and
annotated identities from the Celeb-A project page:
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html. The
dataset comprises 10.177 identities. First, we center crop and
resize each image to achieve the correct resolution of 64×64.
Then, we select a random subset of 100 identities, between
these that have at least 15 samples per class. For Stan-
ford Cars, we download the original dataset from Kaggle,

https://github.com/omertov/encoder4editing
https://github.com/sapphire497/style-transformer
https://github.com/sapphire497/style-transformer
https://github.com/SerezD/NVAE-from-scratch
https://github.com/ndb796/CelebA-HQ-Face-Identity-and-Attributes-Recognition-PyTorch
https://github.com/ndb796/CelebA-HQ-Face-Identity-and-Attributes-Recognition-PyTorch
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

Figure 9. Mixing samples of different classes following what has been learned by Bayesian Optimization on the Celeb-A HQ Gender task.
From left to right: Sample A (female or male), Class features of sample A mixed with Details of sample B, Class features of sample B mixed
with Details of sample A, Sample B (male or female).

at: https://www.kaggle.com/datasets/jessicali9530/stanford-
cars-dataset. We use the provided class names to filter those
containing the words “coupe”, “hatchback”, “suv” or “van”
in the original label. Then, we regroup them into 4 classes
and manually remove outliers, keeping the same number
of images per class. Lastly, each image is squared, adding
black padding at the top and bottom sides, and resized at
128× 128 resolution.

Training of classifiers. We use pytorch.models
classes for the base architecture of each classifier. These
are: resnet50, vgg11_bn, and resnext50_32x4d,
respectively. In all cases, we replace the final fully connected
layer with an MLP composed of two linear layers, a batch
normalization, and a ReLU activation function. Then, we
train the full model (backbone + head) on each task.

Hyperparameters of attacks. In a preliminary phase, we
tested several hyperparameter configurations for both attacks,
ensuring a sufficient number of steps for convergence. In
general, we observe better performance of DeepFool, requir-
ing significantly fewer steps to achieve high success rates.
We show the final values for each task in Tables 2 and 3.

Task Class Tested Overshoot Steps

Gender 2 0.01 1024
Identities 8 0.02 128
Cars 4 0.02 256

Table 2. Final hyperparameters for DeepFool attack.

Task Reg. Const. Conf. Steps Restarts LR

Gender 64 0.01 1024 8 1e− 3
Identities 16 0.05 1024 8 5e− 3
Cars 24 0.02 1024 8 2e− 3

Table 3. Final hyperparameters for Carlini & Wagner attack.

Code and Training of competitors. We use the
official code provided by each competitor to train
models on our tasks. The code is available at
https://github.com/yaodongyu/TRADES for TRADES, at
https://github.com/nercms-mmap/A-VAE for A-VAE , and
at https://github.com/shayan223/ND-VAE for ND-VAE. For
TRADES, we fine-tune each classifier for 50 additional
epochs, setting the beta regularization term to 1.5, 1.0, 8.0
for gender, identities, and cars, respectively. We found these
values to give the best trade-off between robustness and ac-

https://www.kaggle.com/datasets/jessicali9530/stanford-cars-dataset
https://www.kaggle.com/datasets/jessicali9530/stanford-cars-dataset
https://github.com/yaodongyu/TRADES
https://github.com/nercms-mmap/A-VAE
https://github.com/shayan223/ND-VAE

Figure 10. Mixing samples of different classes following what has been learned by Bayesian Optimization on the Stanford Cars Type
Classification task. From left to right: Sample A (coupe or hatchback), Class features of sample A mixed with Details of sample B, Class
features of sample B mixed with Details of sample A, Sample B (suv or van).

curacy. For A-VAE, we follow the indications of the original
paper and downsample the initial image to 32 × 32, inde-
pendently from the starting resolution. We continue training
until convergence of the GAN model. For ND-VAE, we
generate the adversarial training set with FGSM attack. The
autoencoder model has 2 scales with 2 groups for the gender
and cars tasks, and 1 scale only in the identity case, due
to lower starting resolution. We train each model for 100
epochs.

D. Ablation Studies

In Figures 6 to 8 (c) of the main paper we test what type
of α combination (learned, linear or cosine) performs best
on each task. Here, we test the effect of preprocessing opera-
tions (adding gaussian noise or applying gaussian blur) when
applied on the best configuration. For Gaussian noise, we
add a random perturbation ν to each image, where |ν|2 = 4
in the gender and cars tasks, while |ν|2 = 2 on the identities
task. For Gaussian blur we set the kernel size to 2

R
2 − 1,

where R is the image resolution, and keep σ = 1 every-
where. Results for each task are visible in Figures 11 to 13.
For better comparison, the attack success rate is computed
also using Gaussian Noise or Gaussian Blur as a standalone
purification mechanism. In the gender case, the combination
with Blur is beneficial to the method, while adding Gaus-

Figure 11. Attack succes rate (the lower the better) for increasing
L2 bounds for different attacks and preprocessing operations, on
the Celeb-A HQ gender task. Dotted lines show the lower bound
of applying only blur or noise as a defense mechanism.

sian noise performs worse. On the remaininig tasks, the
addition of Gaussian Noise allows an extra boost on the
Carlini & Wagner attack, while all runs achieve similar per-
formances on DeepFool. For computing the final results,
shown in Figures 6 to 8 of the main paper, we use the best
α + preprocessing combination found after these ablation
studies.

E. Qualitative Results
We show one success and one failure case of purification

on each task in Figures 14 to 16, respectively. For additional

Figure 12. Attack succes rate (the lower the better) for increasing
L2 bounds for different attacks and preprocessing operations, on
the Celeb-A 64 identities task. Dotted lines show the lower bound
of applying only blur or noise as a defense mechanism.

Figure 13. Attack succes rate (the lower the better) for increasing
L2 bounds for different attacks and preprocessing operations, on
the Stanford Cars 128 task. Dotted lines show the lower bound of
applying only blur or noise as a defense mechanism.

comparison, the images also show the same examples when
purified with ND-VAE and A-VAE methods. As visible,
the former mainly acts as a denoiser, attempting to remove
adversarial noise while reconstructing the clean sample. A-
VAE tries instead to modify the details of the input sample,
while maintaining the semantic content. However, the mech-
anism appears limited, and the final purified image highly
resambles the initial image. On the opposite, our method
based on MLVGMs aims at maintaining only the relevan
class information, while re-sampling all remaining irrelevant
details. In coarse-grained classification (like male/female,
with only two classes), this means the the final purified sam-
ples are highly different from the initial image. Conversely,
in fine-grained tasks such as identity classification, the com-
bination of α hyperparameters is properly tuned to alter only
a few details, since it is easier to alter the class label. With
this approach, MLVGMs can be effective both in coarse and
fine-grained classification tasks, while limiting the freedom
of the attacker, which is forced to act on the initial image by
changing only imperceptible details.

F. Additional Results on Autoattack

In completion of the results reported in Section 4, we
analyze the performance of our method also with Autoat-

tack [14], a well-known evaluation pipeline which attempts
to fool defense mechanisms by combining different tech-
niques. The results for the three tasks are shown in Fig-
ures 17 to 19. In general, changing the hyperparameters
combination (learned, linear or cosine) does not seem to
have a significant effect in this scenario, while adding gaus-
sian blur or noise is beneficial in Celeb-A HQ and Standford
Cars tasks, respectively. When comparing with other meth-
ods, the general trend observed in Section 4 is maintained,
with ND-VAE performing best on ids and cars classification
and our MLVGMs-based mechanism achieving comparable
results with other methods. Interestingly, TRADES [75]
fails against this attack in the Celeb-A HQ gender classifi-
cation task, showing the effectiveness of AutoAttack even
when compared to state-of-the-art methods such as C&W or
DeepFool.

Figure 14. Qualitative examples of purification via MLVGMs on the Celeb-A HQ gender task. We show one success case (left) and
failure case (Right), comparing the purification with the one of ND-VAE and A-VAE. In each example, we additionaly show the clean and
adversarial images.

Figure 15. Qualitative examples of purification via MLVGMs on the Celeb-A 64 identities task. We show one success case (left) and
failure case (Right), comparing the purification with the one of ND-VAE and A-VAE. In each example, we additionaly show the clean and
adversarial images.

Figure 16. Qualitative examples of purification via MLVGMs on the Stanford Cars 128 task. We show one success case (left) and failure case
(Right), comparing the purification with the one of ND-VAE and A-VAE. In each example, we additionaly show the clean and adversarial
images.

Figure 17. Success rates of Autoattack [14] for 100 samples on the Celeb-A HQ gender classification task. From left to right: comparison of
the tested combinations (learned, linear and cosine); ablations on the introduction of random noise and blur; and comparison with other
methods.

Figure 18. Success rates of Autoattack [14] for 100 samples on the Celeb-A ids classification task. From left to right: comparison of
the tested combinations (learned, linear and cosine); ablations on the introduction of random noise and blur; and comparison with other
methods.

Figure 19. Success rates of Autoattack [14] for 100 samples on the Stanford Cars classification task. From left to right: comparison of
the tested combinations (learned, linear and cosine); ablations on the introduction of random noise and blur; and comparison with other
methods.

	. Pseudocode
	. Qualitative Analysis of Bayesian Optimization
	. Experimental Details
	. Ablation Studies
	. Qualitative Results
	. Additional Results on Autoattack

