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A. Image Feature Extraction
For the DINOV2 features we use the author-provided

ViT-S/14-reg network checkpoint. The ResNet50 [21]
network, pre-trained on the ImageNet1K [9] dataset, is used
to extract features from its first three blocks: the input
block, residual block 1, and residual block 2. Each out-
put feature is up-sampled to H

4 × W
4 and compressed to 32

channels using a convolutional layer.
The custom image features CNN is trained from scratch,

and it is inspired by NEUFLOW’s feature CNN [63]. Ini-
tially, an image pyramid is created by subsampling the input
image at different scales (1/1, 1/2, 1/4). For each level of the
image pyramid, a convolutional layer is applied with spe-
cific kernel sizes, strides, and padding to ensure the output
resolution is H

4 × W
4 (k4:s4:p0 | k8:s2:p3 | k7:s1:p3). The

outputs from each pyramid level are concatenated and com-
pressed to 32 channels using an additional convolutional
layer.

The features from all the feature providers (DINOV2,
RESNET, custom CNN) are aggregated and compressed
through a convolutional operation (from 5 × 32 channels
down to 32 channels) to produce an additional fused feature
for the cost-volume.

The impact of feature extractors on performance is
demonstrated in Tab. 6. Excluding DINOV2 features causes
a decrease in AJ from 65.7 to 64.6. Further removing
both DINOV2 and RESNET features, leaving only the cus-
tom shallow CNN features, results in a more pronounced
drop to AJ 61.5. Since the overall runtime is dominated
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Figure 5. Probability of selecting OF with a given ∆ on
TAP-VID DAVIS [10], evaluated on frames more than 32 frames
distant from template. Statistics are similar for RAFT and ROMA,
but long jumps ∆ = t− 1 are selected more often with ROMA.

by optical flow computation, it remains nearly unchanged
(≈ −0.01 FPS) without the DINO and the RESNET back-
bones. Thus, we keep all three feature extractors.

B. Feature Concatenation and Flow Features

The final featuremap contains 6 (DINO, 3× RESNET,
custom CNN, fused) cost-volumes, each flattened to 49
channels from the ±3 range 7 × 7 cost-volume response
maps, resulting in a total of 294 channels. In addition to
that it contains 2 × 32 channels of the fused features from
the template and the current frame (warped by the flow).
Finally it has 64 channels of flow features derived from the
input F1→t flow chain by a small CNN, for a grand total of
422 channels.

C. Timing

As mentioned in Section 3.3, we implement caching for
optical flow estimates and image features to improve effi-
ciency. Table 5 reports the overall tracking timing for re-
sults shown in Tab. 1 and Tab. 2 in the paper both with
standard caching during computation and with the caches

FPS ↑ PPS ↑ FPS pre-computed ↑ PPS pre-computed ↑
MFTIQ with 512×512 720×1080 512×512 720×1080 512×512 720×1080 512×512 720×1080
RAFT [51] 2.66 0.90 8234 8897 10.95 3.76 26944 33921
NEUFLOWV2 [62] 5.67 2.03 16446 19348 10.56 3.59 27589 32175
RAPIDFLOW [36] 3.06 1.35 9603 13058 10.65 3.49 28396 31960
GMFLOW [58] 3.63 0.76 11365 7638 10.31 3.47 27304 32075
SEA-RAFT [55] 2.93 0.93 9285 9195 10.24 3.40 27296 31591
MEMFLOW [13] 1.16 0.29 3836 2985 10.95 3.71 27412 32907
FFORMER++ [48] 1.04 0.24 3457 2437 10.47 3.76 27183 33303
ROMA [16] 0.21 0.19 709 1948 10.10 3.67 24986 32703

Table 5. Runtime evaluation of the whole MFTIQ tracker with various OF methods with (right) and without (left) OF and features
pre-computed. All results shows processing speed in frames-per-second (FPS) and points-per-second (PPS) for two different resolutions of
images. PPS were evaluated for a sequence of 80 images. In the case of pre-computed optical flow and image feature cache, speed is the
same regardless of the OF method used up to a measurement noise.



method AJ ↑ <δxavg↑ OA ↑
(1) Full MFTIQ (ROMA) 65.67 79.82 87.75
(2) -DINO 64.61 79.59 87.80
(3) -DINO -RESNET 61.54 78.58 85.02

Table 6. Influence of IQ feature extractors in the MFTIQ model. The table shows the performance variations when different backbones are
omitted, with the remainder of the network held constant. All models followed identical training and evaluation protocols. The evaluation
was conducted using the TAP-VID DAVIS [10] (strided) dataset.

runtime [FPS] ↓
∆-set hyper-parameter AJ ↑ <δxavg↑ OA ↑ 512x512 720x1080

∆ ∈ {1, 2, 4, 8, 16, 32, t− 1} 65.67 79.82 87.75 0.21 0.19
∆ ∈ {1, 4, 16, t− 1} 65.50 79.57 87.42 0.35 0.32
∆ ∈ {1, 8, 32, t− 1} 59.03 72.79 82.34 0.35 0.32
∆ ∈ {t− 1} 57.46 70.08 78.73 1.31 1.14
∆ ∈ {1} 54.67 70.99 73.35 1.31 1.14

Table 7. Ablation of different sets of ∆ used for optical flow chaining. The default set of ∆s (first row) (same as in MFT) performs the
best. The base-4 (second row) set achieves a better speed / performance trade-off. MFTIQ ROMA evaluated on TAP-VID DAVIS [10]
(strided). Performance measured by average Jaccard (AJ), position accuracy (<δxavg), and occlusion accuracy (OA). Speed of tracking
densely measured by average frames per second (FPS).

pre-computed offline. With optical flow and image fea-
tures computed in advance, MFTIQ runs at 3.7 FPS on
720 × 1080 and at over 10 FPS on 512×512 video reso-
lution.

D. Delta Set Ablation
Tab. 7 shows the effect of using different sets of ∆s. Our

default base-2 configuration, ∆ ∈ {1, 2, 4, 8, 16, 32, t− 1},
follows the MFT setup [39]. However, we found that us-
ing a base-4 set, ∆ ∈ {1, 4, 16, t− 1}, achieves a 1.6×
speedup with only a minimal performance decrease on the
TAP-VID DAVIS dataset [10]. Both direct matching be-
tween the template and the current frame (∆ ∈ {t− 1})
and consecutive frame chaining (∆ ∈ {1}) result in a sig-
nificant performance decrease across all evaluated metrics.

We have also evaluated (Fig. 5) the frequency of selec-
tion for each ∆ in MFTIQ RAFT and MFTIQ ROMA in
the default ∆-set. The results show similar statistics be-
tween the two OFs, though the direct jump (∆ = t−1) is se-
lected more frequently in ROMA. This is expected since the
ROMA was trained on wide-baseline matching data, mak-
ing it more reliable with more distant pairs of frames. Only
frames beyond timestep 32 are evaluated to avoid biasing
the results with smaller ∆s at the beginning of the sequence,
where longer ∆s are not yet available for matching.
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