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Figure 1. Qualitative comparison to POP showing results for loose clothing on unseen poses. We show both point clouds and their
meshified versions for depicting point density and clothing deformation respectively. We additionally show the percentage of vertices
occupying the loose clothing region (skirt). Due to modeling the clothing on top of a template model such as SMPL, the points from
POP in the skirt region are too sparse to model any significant deformations. This is due to the points having a hard association with
the nearest body part. Our method produces points much more consistently distributed across the body and clothing, thereby exhibiting
realistic pose-dependent clothing deformations. Zoomed-in regions emphasize the most significant clothing deformations.
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Figure 2. Using SMPL as a post-processing step helps in recovering face and the more difficult to obtain hand details.

1. Extended Results and Discussion

Here, we conduct further analysis of our results in the
main paper. We compare with SoTA point-based method
POP and also show how a posed SMPL mesh can be used
to refine the obtained avatar from PocoLoco. Finally, we
also provide more ablation studies to give an insight into
the selection of our architecture.

1.1. Comparison with POP

POP shows quantitative results for multi-subject train-

ing. For a fair comparison, we train and evaluate POP in a
subject-specific manner, similar to how we report results for
PocoLoco.
Points sparsity. We show an in-depth comparison with
POP here. The illustration in Fig. 1 reveals that points from
POP exhibit sparsity in the skirt region, detecting fewer
clothing deformations. In contrast, PocoLoco generates
points evenly distributed across the body and clothing, en-
abling the recognition of clothing deformations. We quan-
tify this by counting the number of vertices in the skirt re-
gion. While POP allocates approximately 25% of its points
to the skirt region, PocoLoco assigns approximately 50% of
its points to this area, contributing to the detection of signif-
icant deformations in the skirt region.

Performance on most difficult poses. Fig. 3 shows a per-
formance comparison on the top 10% most difficult poses
in the test set of the loose clothing subject in DynaCap. For
each scan in the test set, we find the closest appearing sam-
ple in the train set and measure the CD. The samples in the
test set with the highest CD are considered the most difficult
poses as they do not appear in the train set. We pick the top
10% of such samples and show a quantitative comparison
in Fig. 3.

Performance on LOOSE dataset. Lastly, we evaluate
POP on our LOOSE dataset. POP achieves a CD of 1.95
cm (vs Ours 2.87 cm) on Subject 1 and 2.86 cm (vs Ours
3.63 cm) on Subject 2.

Reproducibility. Prior arts like POP [4] require the regis-
tration of an SMPL [2] body model to the 3D reconstruc-

tions before the training process, but unfortunately do not
provide the code to obtain these in their public repositories.
As our model is purely learning-based and does not require
any prior registration of a scanned template or human body
model, it will be completely reproducible on any other data
given our released codebase.

1.2. SMPL based refinement

While previous approaches [4] utilize a template such as
SMPL to constrain the space of deformations using Linear
Blend Skinning, the resulting clothed meshes suffer from
artifacts such as a tear in the skirt region due to points spar-
sity in modeling loose clothes. Our diffusion-based archi-
tecture attends to the uniform distribution of points in the
loose clothing region thereby modeling clothing deforma-
tions. However, it may lose out on prior information such
as facial and hand geometry available to template-based
methods. We propose to mitigate this problem via a post-
refinement step. Once we obtain the pose-conditioned point
clouds from the inference pipeline, we fit a SMPL template
to this test-time predicted unseen point cloud. Following
this, we extract the head and hand regions from the SMPL
template and replace them with our predictions to obtain a
higher-quality posed avatar. Fig. 2 illustrates the results ob-
tained using this approach. This is similar to how ECON [5]
proposes an optional stage to obtain the final mesh.

1.3. Ablation studies

Importance of the number of points. We perform an ab-
lation study to measure the performance as a function of the
number of points used for training our method. Fig. 4 shows
that more points yield better performance. In the top row,
the model starts to lose out on details in the shirt’s sleeve
region as the number of points reduces. We see a similar
effect in the skirt region as well. In the bottom row, points
on the left hand become sparse with respect to the overall
points. As the hand is the thinnest part of the body, we see
a part of it does not have enough points to get the faces.

Scheduling policy. We propose the Quartic scheduling pol-
icy for our diffusion-based architecture which helps to re-



Figure 3. Qualitative comparison on top 10% most difficult poses in the loose subject of DynaCap dataset. POP obtains 7.2 cm CD while

PocoLoco obtains 5.5 cm CD.

cover more details compared to the Linear scheduling algo-
rithm. As Fig. 5 illustrates, the Quartic policy uses smaller
beta values at the beginning and gradually uses higher val-
ues to convert the point clouds to a Gaussian distribution

noise. This implies details such as clothing deformations
are retained for more time steps during the forward diffu-
sion step, and the coarse body shape is converted to noise
in subsequent steps. During the reverse diffusion process,



Figure 4. Visualization of modeling clothing deformation as a
function of the number of points. More points yield better rep-
resentation capability. We obtain a CD of 5.44 cm for 2k, 4.62 cm
for 5k, and 4.22 cm for 10k points.

we benefit from recovering the coarse body shape early on
so that the model can utilize more time steps towards re-
covering clothing deformations. We also experiment with
the Cubic scheduling policy. However, beta values obtained
using the quartic schedule work best for us.

Training time. The training time varies for PocoLoco from
4 (19500 frames) to 6 days (33500 frames) with 8 A100
GPUs. However, as we use a Transformer architecture we
note that by using FlashAttention, the training time effec-
tively reduces by 4x. Though we do not conduct a quantita-
tive evaluation, we see no visible artifacts in the generated
predictions using FlashAttention. Inference time is 80s per
sample which can again be reduced using FlashAttention.

Cross, Self, Cross+Self Attention. We show in Fig. 6 the
efficacy of using only self, only cross, and a combination
of self and cross attention in the proposed Transformer ar-
chitecture. Though self-attention works reasonably well,
it takes a longer time to converge. Cross attention on the
other hand does not converge after a long training time but
can reasonably model the pose. A combination of self and
cross-attention brings the best of both worlds by attending
to the conditioned pose and converging to the target point
cloud faster.

1.4. Comparison with SkiRT

[3] extend POP to predict blended skinning weights for
each point. Besides the data used in training POP, one needs
to have some extra parameters (as mentioned on the project
page) to train SkiRT on a custom dataset that the authors
have not yet discussed details about. It is thus not possible
to reproduce the results from SkiRT on our dataset. We do
not train our model on the ReSynth dataset as it only has
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Figure 5. We depict the effect of sampling betas based on different
noise scheduling policies used in our diffusion model. We choose
quartic as it adds noise slowly at the beginning thereby retaining
more details for a longer duration than the linear schedule. Best
viewed in color.
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Figure 6. Ablation study to show the effectiveness of proposed
components (using only self-attention, a linear noise schedule, or
self and cross-attention with two and four layers) against the full

model (rightmost). We note the importance of each of our design
choices for the quality of the final generation results.
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about 1000 frames per subject which is insufficient to train
a diffusion model. We refer the reader to the supplementary
section S3.1 in [3] where the authors note that the points
produced by SkiRT can still be visibly sparser than on other
body parts. PocoLoco on the other hand does not suffer
from such a problem.

1.5. Application: Pose Editing

We can achieve pose editing in two ways. First, consider
the problem of point cloud (PC) completion. For a partial
PC € RWW—K)x3 with K missing points, we train our model
to reconstruct the target PC € RY >3 by denoising K points
sampled from Gaussian distribution. Similarly, we remove
the points in the area of pose difference and proceed to re-
construct w.r.t. the conditioned target pose. The second
approach is to add ¢ = 100 steps of noise to the source pose
PC and condition this with the target pose to get the pose
edited result. We note that this works well for minor pose
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Figure 7. LOOSE dataset with 49K points, showing folds and
wrinkles in striped skirts and long shirts. Best viewed zoomed in.

changes and may result in slight shape change for a major
change in pose.

1.6. LOOSE Dataset details

We follow a process similar to DynaCap [ 1] for a conve-
nient benchmarking method. To create the LOOSE dataset,
we begin by scanning the actor in a T-pose with a 3D
scanner. We then use commercial multi-view stereo recon-
struction software, PhotoScan (http://www.agisoft.com) to
generate the 3D mesh. This mesh is manually rigged to
a skeleton. Additionally, we track human motions using
a multi-view markerless motion capture system, TheCap-
tury (http://www.thecaptury.com/). Fig. 7 shows our dataset
with high-quality geometric details using 49K points.

2. Limitations and future work

While our method is adept at recovering loose clothing
deformations, modeling fine details such as facial and hand
geometry is difficult. Prior arts benefit from this by using
a SMPL template as a prior which helps them retain these
details. We see this in Fig. 1 where POP models face ge-
ometry better than PocoLoco, albeit different from the GT.
We propose a way to mitigate this in the post-processing
step of our scans where we fit the posed SMPL meshes. On
another note, we are limited to using 10k points due to our
computational heavy transformer architecture. As we show
in Fig. 4, using more helps recover more details. We leave
the design of a more efficient architecture as a future work.
Furthermore, the method may fail for extreme unseen poses.

Finally, since our method does not consider temporal
consistency, a motion sequence extracted as a sequence of
poses may exhibit noticeable changes in deformations for
similar poses, leading to animation that lacks smoothness.
We regard addressing this as a potential avenue for future
research.
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