
A. Appendix/Supplemental material
A.1. Intermediate Results from MVMD Blocks

To illustrate the functionality of each network compo-
nent, we provide visualizations of attention heat maps and
intermediate results. These visualizations demonstrate how
the network processes input images, extracts information
using attention mechanisms, and refines the mirror mask for
accurate detection.

As discussed in Section 4, our MVMD network takes
three images from a single scene as inputs. Fig. 1 shows an
example of an indoor bathroom scene with a large mirror
and complex textures, which challenges mirror detection by
making it difficult to distinguish the reflection area from the
surrounding wall.

The Inter-Views Block processes image pairs [I1, I2] and
[I1, I3] through cross-attention and self-attention mecha-
nisms. Fig. 2 visualizes the attention heat maps, reveal-
ing that cross-attention focuses on the left side of the mir-
ror where reflection differences between [I1, I2] and [I1,
I3] are evident. The differences in their cross-attention
heatmaps indicate that each pair captures distinct mirror
information due to viewpoint shifts and mirror reflections.
Thus, using two pairs ensures that sufficient information is
captured through these shifts. As discussed in Section 5.4,
this shows the Inter-Views Block’s ability to capture object
shifts inside the mirror due to viewpoint changes. Fig. 3
depicts the output of the Inter-Views Block after channel
attention. It shows that unimportant feature channels are
filtered out (visible in the upper-left corner), while signifi-
cant channels are retained, as demonstrated in the remaining
figures.

As discussed in Section 5.4, the Intra-view Block cap-
tures the correspondence between objects inside and outside
the mirror. Fig. 4 illustrates the output feature channels,
highlighting how reflected objects inside the mirror match
real objects outside. The same channel attention mecha-
nism is applied to filter out less important channels while
preserving key ones, ensuring precise mirror location infor-
mation.

Finally, the Refinement Block enhances the edge defi-
nition of the initial mask generated by the Inter-View and
Intra-view Blocks. Fig. 5 shows how it significantly im-
proves mirror edge clarity and corrects misidentified mirror
areas, particularly around objects in front of the mirror, such
as the light bulbs at the top left and right.

A.2. Additional MVMD Results

To demonstrate the accuracy and robustness of the pro-
posed MVMD module across a variety of scenes and its sta-
bility in detecting mirrors from multiple viewpoints within
the same scene, we present additional inference results in
Fig. 6. For each scene, three images were selected from
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Figure 1. Example scene with three input images: I1, I2, and I3
in an indoor bathroom.
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Figure 2. Visualization of the cross-attention and self-attention
heat maps on [I1, I2] and [I1, I3] in the Inter-views Block.

Figure 3. Visualization of selected channels from the output of the
Inter-views Block.

different angles of real-world environments. These results
demonstrate the module’s high accuracy in detecting mir-
rors, even under challenging conditions such as indistinct
edges and complex environments. Furthermore, they il-
lustrate the module’s consistent performance across differ-
ent perspectives, showcasing its ability to reliably identify
and delineate mirrors regardless of viewpoint changes. This
comprehensive evaluation underscores the effectiveness of
the MVMD module in handling diverse and complex mirror
detection scenarios.

A.3. Revisit MVMD Dataset

To highlight the diversity of our MVMD dataset, par-
ticularly in terms of mirror shapes, sizes, locations, and



Figure 4. Visualization of selected channels from the output of the
Intra-view Block.
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Figure 5. Visualization of the differences between the initial mask
and final mask.

quantities, we provide additional examples in Fig. 7. These
examples showcase a wide range of mirror configurations
within various scenes, illustrating the dataset’s capacity to
cover different mirror types and placements. The variety
in mirror attributes, such as large versus small mirrors, dif-
ferent shapes, and their diverse positions within the scene,
underscores the comprehensive nature of the dataset. By
including these varied examples, we demonstrate how the
dataset captures the real-world complexity of mirror detec-
tion, which is crucial for training and evaluating the MVMD
network under diverse conditions.

A.4. From Mirror Mask to 3D Labels

Various methods in 3D reconstruction use different types
of image masks to modify scenes or enhance reconstruc-
tion quality based on specific tasks [8, 9, 11]. Image masks
are particularly crucial in challenging areas such as mir-
rors, where they significantly improve accuracy [5, 6, 12].
However, these masks are often created manually, a process
that is labor-intensive and prone to errors, especially around
complex edges. Such inaccuracies can result in sub-optimal
reconstructions and artifacts in specific viewpoints.

To address these issues, we propose the MVMD net-
work for automatically generating mirror masks, tailored
to match the input requirements of 3D reconstruction tasks
that use multi-view inputs. Our approach begins by gener-
ating a binary mask based on pixel-wise confidence scores
from 2D images. This data-driven technique enhances the
precision of mirror area identification, reducing manual er-

rors and inconsistencies, and thus improving both recon-
struction accuracy and efficiency.

Furthermore, to effectively utilize the automatically gen-
erated mirror mask, it can be mapped into 3D space using
established labeling and voting algorithms, commonly em-
ployed in traditional 3D point cloud reconstructions. La-
beling algorithms assign semantic categories to each point
in the point cloud, aiding in scene classification and seg-
mentation. Voting algorithms, such as Hough Voting [10],
RANSAC [2], and kNN voting [3], leverage global informa-
tion from local features to enhance point cloud denoising,
plane fitting, and object detection.

For NeRF (Neural Radiance Fields) [7] and 3D Gaus-
sian Splatting (3D GS) [4], labeling and voting techniques
can still be adapted, despite their different representations of
3D data compared to traditional point clouds. NeRF gener-
ates a continuous field using neural networks rather than ex-
plicit point clouds. Adaptations such as Semantic NeRF [1]
extend the model to output semantic information for scene
annotation. Similarly, the geometric structures produced by
3D GS can be converted into discrete point clouds [4], fa-
cilitating the use of traditional labeling techniques for clas-
sification and segmentation. Correspondingly, voting tech-
niques can be applied indirectly to NeRF by first extracting
point clouds from the NeRF output and then using these
techniques to enhance segmentation or denoising. In the
case of 3D GS, voting can be applied directly to point clouds
or meshes obtained after the Structure from Motion (SfM)
process, improving reconstruction accuracy and maintain-
ing consistent object segmentation across multiple views.

By integrating these labeling and voting techniques, the
proposed MVMD network effectively enhances the recon-
struction accuracy of mirror regions in various 3D recon-
struction tasks. It automatically generates mirror masks and
maps them into 3D space, combining labeling with classi-
fication to precisely capture mirror regions and manage re-
flection effects. This approach reduces geometric errors and
confusion caused by reflections, significantly improving the
overall fidelity and reliability of 3D scene reconstruction.
To further validate the effectiveness of the MVMD network,
we plan to conduct a system-level integration and perform
extensive experiments in future work to comprehensively
assess its performance and potential applications in various
complex scenarios. This will help to further optimize the
model and ensure its reliability and effectiveness in practi-
cal applications.

A.5. Extending to High-Reflectivity Regions

In the real world, objects with high-reflective sur-
faces often exhibit characteristics similar to mirrors, which
poses significant challenges for 3D reconstruction. High-
reflectivity textures can mislead algorithms into interpreting
reflections as part of the texture or as actual objects, lead-
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Figure 6. Additional MVMD network results on different scenes, featuring three viewpoints per example.



Figure 7. Additional examples from the proposed MVMD dataset.



ing to artifacts such as ghosting or errors depending on the
viewing angle.

Directly applying mirror detection networks to iden-
tify all high-reflectivity areas remains challenging. Firstly,
high-reflectivity surfaces exhibit greater variability com-
pared to mirrors, as these surfaces are often uneven, leading
to distortion or blurring in reflected content. Secondly, un-
like mirrors with near-perfect reflections, high-reflectivity
areas often display content influenced by the original tex-
ture and reflection coefficient, which can result in reflected
external objects appearing as part of the surface. Finally,
high-reflectivity areas may lack distinct edges, complicat-
ing the task of delineating actual object boundaries.

However, by leveraging the cross-attention and self-
attention mechanisms of our MVMD network, there is po-
tential to extend its capabilities to detect high-reflectivity
regions. Specifically, the basic structure of our Inter-views
Block can be retained to differentiate high-reflectivity ar-
eas from the background, as it is adept at identifying vary-
ing levels of reflection. For the Intra-view Block, we can
adapt its design to handle the effects of original texture
and reflection coefficients, enabling it to generate an ini-
tial mask for high-reflectivity regions. Finally, by enhanc-
ing the edge detection capabilities of the Refinement Block,
we can improve the network’s ability to distinguish texture-
based edges within these high-reflectivity areas, refining the
mask to better represent the actual boundaries of objects.

In future work, we plan to systematically evaluate and
refine these extensions through extensive experimentation
with various high-reflectivity scenarios. Our goal is to
enhance the MVMD network’s robustness and accuracy
in detecting and delineating high-reflectivity regions. By
doing so, we aim to improve its applicability across a
broader range of real-world environments, supporting next-
generation 3D reconstruction applications.
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part, Marc Pollefeys, Gabriel Brostow, Michael Firman, and
Sara Vicente. Removing objects from neural radiance fields.
In CVPR, 2023. 2

[12] Junyi Zeng, Chong Bao, Rui Chen, Zilong Dong, Guofeng
Zhang, Hujun Bao, and Zhaopeng Cui. Mirror-nerf: Learn-
ing neural radiance fields for mirrors with whitted-style ray
tracing. In Proceedings of the 31st ACM International Con-
ference on Multimedia, pages 4606–4615, 2023. 2




