Attention-Guided Masked Autoencoders For Learning Image Representations
Supplementary Material

A. Implementation Details
A.1l. Autoencoder Architecture

Our attention-guided masked autoencoder architecture is
inspired by the vanilla MAE [8], whereby we use a vanilla
ViT [6] for both the encoder and the decoder. Our models
operate with a patch size of 16 x 16, and our encoder is a
ViT-L with 16 heads and a depth of 24 blocks which pro-
duces 1024 — d embeddings. We keep our decoder depth
constant at 8 blocks with a width of 512 — d which is nar-
rower than our encoder.

For the DINO model, we choose the ViT-B with patch
size 16 x 16, pre-trained fully unsupervised on ImageNet-
1K [5]. This transformer is also used for generating the
attention maps for TokenCut. To conduct our Grad-CAM
ablation, we implement an ImageNet-1K supervised pre-
trained ResNet-50.

A.2. Data Pre-Processing

All images used for pre-training are resized to 224 x 224
pixels. We only apply random horizontal flipping 50% of
the time and normalization afterwards. Whenever our input
image is flipped, we flip our attention map as well. To gen-
erate our attention map, we pass each image through the dif-
ferent object discovery networks and their respective post-
processing pipeline. To simplify repeating our conducted
experiments, we serialize all attention maps. All attention
maps are output with size 14 x 14 given patches of dimen-
sion 16 x 16.

A.3. Training Details

To enable a leveled evaluation, both the vanilla MAE and
our model are trained with the same basic settings, follow-
ing He et al. [8]. All models are trained on a single A100
80GB with a batch size of B = 512. We keep the AdamW
optimizer [12] and adopt a half-cycle cosine learning rate
schedule after 40 warmup epochs [ 1]. Our learning rate
is calculated using a linear scaling rule with a base learning
rate of 0.00015 [7]: & = 0.00015- B/256. The learning rate
is decayed after the warmup phase in the described fashion.

A 4. Pre-training Protocol

To pre-train our models, both the vanilla MAE and ours,
we keep the training configuration, shown in Table 1, the
same to ensure a fair comparison of the techniques. All
configurations again follow He ef al. [8].

Component Value

Data Augmentation RandomResizedCrop

Batch Size 512

Base Learning Rate 1.5e~4

Learning Rate Schedule = Half-Cycle Cosine Decay [ 1]
Warmup Epochs [11] 40

Optimizer AdamW [12]

Optimizer Momentum 0.9, 0.95

Table 1. Pre-training protocol details.

Component Value

Data Augmentation RandomResizedCrop
Batch Size 4096

Base Learning Rate 0.1

Learning Rate Schedule = Half-Cycle Cosine Decay [ 1]
Warmup Epochs [11] 10

Training Epochs 90

Optimizer LARS [17]

Optimizer Momentum 0.9

Table 2. Linear probing protocol details.

A.5. Linear Probing Protocol

For our linear probing experiments, we freeze the entire
backbone and finetune a single linear layer on the dataset.
We evaluate the model on the validation split every epoch.
We provide a detailed overview of our configuration in Ta-
ble 2 below. All configured parameters are set equally to
the implementation from He et al. [8].

A.6. Low-Shot Finetuning

For MAE and our A##G ViT-L/16 models, we adapt the
low-shot finetuning protocol from Assran et al. [1]. For



the 1% evaluation (roughly 13 images per class), we fine-
tune the models for 50 epochs with a peak learning rate of
le~3 and use only crop and flip as augmentations. For the
10% finetuning, we add the extensive augmentations from
the original MAE finetuning protocol introduced by He et
al. [8]. For the SemMAE ViT-B [9], we find it improves re-
sults to reduce the learning rate to 5e~%, increase the epochs
to 90 while keeping crop & flip for 1% and the extensive
augmentations for 10%. For SimMIM [16] and BEiT [3],
we found that increasing the learning rate in comparison to
the MAE models significantly improved their results. For
the BEiT ViT-L, we finetune for 50 epochs with a learning
rate of 5e 3, with crop and flip for 1%, as well as the exten-
sive MAE augmentation scheme for 10%. For the SimMIM
ViT-B, we also use a learning rate of 5¢~2 and increase the
warmup epochs to 20 instead of 5 for the other models. We
finetune for 100 epochs with the same augmentations. ViT-
L models use learning rate layer decay of 0.75, ViT-Bs use
0.65. We always set weight decay to 0.05.

A.7. k-NN Classification Protocol

We follow the k-NN classification protocol by Caron et
al. [4]. We extract embeddings for all images in the train-
ing and validation split. We then perform a weighted k-NN
classification for k € {5, 10,20, 100, 200} with a tempera-
ture of 0.07. We calculate our k-NN results with the official
script from the DINO code release ! by Caron et al. [4] and
append the model loading part with the Python functions
for checkpoint loading from the official repositories of the
models we report numbers for.

A.8. Few-Shot Protocol

For our few-shot classification experiments with linear
probing, we mostly follow the linear probing protocol de-
scribed in Section A.5. We observe that due to the small
dataset size with reduced training samples, mostly fewer
than 4096, our learning rate calculation seems to output a
learning rate too small for effective experimentation. There-
fore, we calculate the learning rate as if the batch size would
be the same by accumulating the gradients from multiple
batches to match the initial batch size.

A.9. Semantic Segmentation

We conduct semantic segmentation experiments on
ADE20k [19] and NYUv2 [13] following the protocols
from Bachmann et al. [2]. We train a ConvNeXt-like [10]
segmentation head on top of our model for both datasets and
report our detailed hyperparameters in Table 6.

Ihttps://github.com/facebookresearch/dino/blob/
main/eval_knn.py

A.10. Taskonomy

As detailed in the main text, we perform experiments
on a variety of tasks from the Taskonomy [!8] benchmark.
Specifically, inspired by Bachmann et al. [2], we train a
DPT-like [14] head on top of the model to predict Depth,
Edges, 2D Keypoints, 3D Keypoints and Occlusion, then
report the average L1 loss and rank on the test dataset. For
this, we use the tiny version of the dataset and limit the
training split to 800 samples and the validation split to 200
samples. We test on the full dataset and report our detailed
result in Table 3. Our attention-guided MAE outperforms
the vanilla MAE across 4 of 5 tasks of the benchmark. We
detail our hyperparameters in Table 7.

A.11. Code And Dataset Release

We will release our code upon acceptance. Our reposi-
tory is based on the original MAE implementation provided
by the authors, therefore ensuring a leveled comparison of
our reported results. We are also planning to release the
guidance maps used to train our model, so that our results
can be easily reproduced.

B. Comparison To Contrastive Methods

In Table 4, we provide a comparison to contrastive meth-
ods, and show that our method A#G is able to lower the gap
for linear evaluations compared to the vanilla MAE.

C. Finetuning Results

We report our finetuning results on ImageNet in Table 5.
Both models have been pre-trained for 800 epochs. Our
training settings follow He et al. [8].

In our experiments, we observe both methods to have a
comparable performance when finetuned on IN1K with a
minor disadvantage for our method.

D. Visualization of Mask Scaling

We provide a visual comparison of different temperature
parameters. Figure 1 shows the attention maps in the dif-
ferent stages of the scaling process, beginning with the nor-
malized output of the object discovery network, followed by
the temperature scaled version and the exponentially scaled
map. By applying the temperature scaling before the ex-
ponential function, we avoid assigning additional weight in
our guidance loss to background patches with zero values.
After scaling with the exponential function, the weight of
the background patches is changed to 1. This is also re-
flected in the visualization, comparing the background in
Figure Ic to 1d. When applied to the reconstruction loss,
this results in the loss of background patches being left un-
changed, since they are simply multiplied by 1. If the order
of scaling operations were to be reversed, the result of the


https://github.com/facebookresearch/dino/blob/main/eval_knn.py
https://github.com/facebookresearch/dino/blob/main/eval_knn.py

Depth Edges  Occlusion 2D Keypoints 3D Keypoints | Average loss Average rank

(-1072) (1073)  (107H (1074 (-1072 (-1072)
MAE 3810  6.927 5.803 2.745 4.558 1.829 1.8
AttG 3770 6.922 5.781 2.659 4.595 1.828 1.2

Table 3. Detailed Taskonomy Results.

(a) Original (b) Normalized (c) Temperature-Scaled (d) Final output, exp. scaled

Figure 1. Visualization of our scaling operations. All attention maps are displayed with a fixed color scale from dark blue for 0 and
bright yellow for 3.8, since the latter value presents the maximum of the guidance map when setting 7 = 0.75. At the normalization step,
most background patches are valued at 0.

nn

(a) Original by =0.7 (c)T=0.75 (d7=0.8

Figure 2. Visualization of guidance maps with different temperatures 7. We fix the color scale from dark blue for 1.0 and bright yellow
for 4.2, the minimum and maximum values of the guidance map when setting 7 = 0.7.

Method Size Epochs k-NN Linear Method Epochs  Top-1 Accuracy

DINO ViT-B 300 76.1  78.2 MAE 800 85.9
d iBOT ViT-B 800 71.5 744 Ours 800 85.6

AttnMask ViT-B 100 72.8  76.1

SimMIM VIT.LB 800 9.4 567 Table 5. Finetuning results on ImageNet.

SemMAE ViT-B 800 45.1  65.0

BEiT ViT.L 800 114 735 exponential function would be divided by the temperature
E MAE ViT.-L 800 528 735 parameter, giving the background patches additional weight
= + AttG (Ours) ViT-L 800 562  74.4 in the reconstruction loss, even though they are not part of

MAE VITL 1600 509  75.1 the object.

+ AttG (Ours) ViT-L 1600 59.0 759

E. Visualization of Different Temperatures

Table 4. k-NN classification and linear probing on ImageNet
for contrastive learning (CL) and masked image modeling
(MIM) based pre-training techniques.

In Figure 3, we visually present the effects of scaling the
attention map with different temperature parameters. By
choosing a lower temperature, the additional emphasis on
the object in the guidance loss is increased, and vice versa.
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Figure 3. Visualization of our guidance maps along the tem-
perature schedule.

This is reflected in the visualizations. The stronger the yel-
low of the patch is, the higher the values used for weighting
the reconstruction loss at this position. Figure 3 visualizes
the influence of 7 on our attention maps.

Component Value
Batch Size 16
Learning Rate 3e

Warmup Learning Rate  1e~©

Network Architecture ConvNeXt [10]
Warmup Epochs [11] 3

Training Epochs 64

Optimizer AdamW [12]

Table 6. Semantic Segmentation protocol details.

Component Value
Batch Size 8
Learning Rate R

Warmup Learning Rate  1e~¢
Network Architecture DPT [14]
Warmup Epochs [11] 3

Training Epochs 64
Optimizer AdamW [12]

Table 7. Taskonomy protocol details.

F. Random Guidance Map Ablations

We also evaluate using a random guidance map with the
value range equal to that of our semantic guidance maps in
order to investigate the effect of the semantic information
in the guidance, but also to rule out a simple regularization
by our method. Identical to our main approach, we apply

the random guidance map to the reconstruction loss. Table
8 shows that our method goes beyond just simply regulariz-
ing the loss and points towards the benefits of our guidance
through semantic information.

Guidance Map k-NN Linear
Random Map 48.0 70.7
TokenCut [15] 57.0 771

Table 8. Ablation of different uses of the attention map. Im-
plementing a random guidance map yields wore results than using
our semantic guidance map, therefore pointing towards the bene-
fits of inducing the semantic information into the training process.

G. Input Masking Ratio

He et al. [8] find that for the vanilla MAE, randomly
masking 75% of the input image is most effective for pre-
training. As shown in Table 9, this is consistent with our
findings. When increasing or decreasing the masking ratio
by 5%, we observe that top-1 accuracy for linear probing
drops. All models have been pre-trained for 400 epochs
with 7 = 0.75 without scheduling and TokenCut attention
maps for loss guidance.

Masking Ratio  Linear
0.7 76.6
0.75 77.1
0.8 76.5

Table 9. Masking Ratios

H. Additional Object Discovery Samples

Figure 4 illustrates additional examples of maps obtained
from the different object discovery networks. The qualita-
tive difference becomes visually apparent across all five ex-
amples.



(a) Original (b) TokenCut (c) DINO (d) Grad-CAM

Figure 4. More attention map visualizations from our object discovery models.
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