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6. Overview

We organize the supplementary material into the follow-
ing sections:

* Licensing information regarding datasets used in this
paper, as well as any dataset/privacy/ethics information
regarding our data, is detailed in Section 7.

» Section 8 contains ablations for each component of
DLCR.

» Section 9 contains additional qualitative examples of
our publicly released clothes-changed generated data.

* Sections 10 and 11 provide more quantitative and qual-
itative CC-RelD results to exhibit the superiority of
DLCR over previous works.

» Section 12 details an optional discriminator that can
be added to the DLCR data generation stage to gener-
ate synthetic data closer to the original training data
distribution, marginally improving results.

» Section 13 motivates our specific use of LLaVA and
LLaMA.

 Section 14 provides more insights and motivation be-
hind our progressive learning method.

* Section 15 provides an ablation on the number of gen-
erated images per training image in DLCR.

 Section 16 details the throughput and space complexity
of each DLCR component.

* Lastly, we briefly detail some possible limitations and
future avenues of work in Section 17.

7. Licensing/Dataset Information

In this section, we provide information regarding licens-
ing, since we are modifying and publicly releasing data that
originates from previous CC-RelD datasets.

Dataset Licenses: Most importantly to note, the LTCC
dataset license explicitly states that no modification or redis-
tribution of the dataset is allowed unless by Fudan University.
Thus, while we show that DLCR does work on LTCC and
improves results, we will not publicly release our gener-
ated data for LTCC. Researchers are free to use DLCR to
re-generate data on their own for the LTCC dataset if they
have requested and been granted acccess to the dataset. The
PRCC dataset does not follow a standardized license, but

simply states that the dataset may only be used for academic
purposes, which our work falls under. The CCVID dataset
explicitly states their dataset falls under a CC BYNC-SA 4.0
license, which allows for sharing, modifying and/or adapt-
ing the data in anyway as long as credit is given, the data
is not used for commercial purposes. Our generated data
falls under the same license, and we do not impose any ad-
ditional limitations. The VC-Clothes dataset follows the
Apache License 2.0, which also allows for redistribution and
modification for academic purposes. In summary, DLCR
follows all licensing requirements for every dataset in the
paper, with the only note being not publicly releasing our
generated LTCC data.

Release, Maintenance, and Ethical Use of DLCR-
generated Data: As mentioned throughout the paper, we
publicly release our generated data with full accessibility
(no PI contact required, full data and code available) at
this URL: https://huggingface.co/datasets/
ihaveamoose/DLCR. Since we release our data on a pub-
licly available data storage website, there is no maintenance
requirements or future access restriction for our generated
data. Regarding ethical use of our data, since we only mod-
ify the clothing items of human subjects in pre-existing CC-
RelD, there are no additional privacy or ethical concerns
that are not already addressed by these datasets when they
were released. However, we do cover the face when pos-
sible in the paper to further protect privacy (we do show
the face occasionally in order to exhibit certain qualities of
DLCR-generated data). Regarding the license of our data,
we choose CC BYNC-SA 4.0 only because CCVID requires
our data to be released under that license due to our use and
modification of their data. For all intents and purposes, we
allow for full and unrestricted academic use of our code
and data as long as we are properly credited in the work.

8. Additional Experiments and Ablations
8.1. Ablations

To demonstrate the utility of each proposed component
of DLCR, we perform ablations on the PRCC dataset and
show these results in Table Al. The first row contains results
obtained with a baseline CAL model without using DLCR.
Effectiveness of ID-preserving generated data: Simply
adding our generated data during Re-ID training (Table A1,
row 3) leads to the most significant improvement in per-
formance, with a 5.5% increase in top-1 accuracy and 3%
increase in mAP over the baseline (Table A1, row 1). In
row 2 of Table A1, where data is generated using standard
image-to-image diffusion, we see marginal improvements



Table Al. Ablations on each proposed component of DLCR on the
PRCC dataset. The addition of each component yields consistent
improvements in performance. Baseline CAL results are given in
the first row. Cumulative performance gains of each component
with respect to the baseline are shown in green.

Generated Progressive | Prediction

Data LLMs Legamin g | Refinement Top-1 mAP

X X X X 55.2 55.8
v (Standard Diffusion) X X X 55.7+0.5 | 559 +0.1
v (Ours) X X X 60.7 +5.5 | 58.9 +3.1
v (Ours) v X X 629 +7.7 | 60.9 +5.1
v (Ours) v v X 65.0+9.8 | 62.4 +6.6
v (Ours) v v v 66.5 +11.3 | 63.0 +7.2

as opposed to our method, which uses ID-preserving masks
and inpainting. This shows that increasing the variety of
clothes-changing training samples, while still preserving the
subject’s ID-related information, is integral to improving
CC-RelD performance.

Effectiveness of LLM prompts: Row 3 in Table Al corre-
sponds to generating data by using random clothes prompts
as a text condition. In row 4 of Table A1, we show the impact
of using LLMs to extract the textual clothing descriptions
in a dataset for text conditioning, with a 2% boost in perfor-
mance. More information regarding the use and impact of
LLMs in DLCR can be found in Sec. 13.

Effectiveness of progressive learning: Since DLCR gen-
erates multiple clothes-changed samples for each training
image, Gpqin is larger in size than Dy,.q;p,. To effectively
utilize G¢yq;n, during training, while also mitigating addi-
tional training time, we gradually introduce new clothing
variations at the mini-batch level with our progressive learn-
ing strategy. This further increases model performance by
another 2% (Table A1, row 5), highlighting the importance
of elaborate procedures when training with generated data.
Effectiveness of prediction refinement: As discussed in
Sec. 3.2.2, our diffusion-based inpainting method can also
be used as a query augmentation at test-time. The model’s
predictions on these augmentations are ensembled using
Alg. 1 to obtain refined similarity scores for each subject,
resulting in better test-time predictions and yielding a further
1.5% improvement (Table A1, row 6).

9. Additional Generated Examples

Figure A3 showcases additional qualitative examples of
our generated data spanning three datasets: PRCC, LTCC,
and CCVID. These examples illustrate how our inpainted im-
ages respect the provided prompts, while also displaying the
realism and diversity in the generated clothing. For example,
in the top-left sample of Figure A3, we see that the diffusion
inpainting model properly generates all the different com-
binations of pants and shirts described in the prompts. In
the top-right example, the inpainting model even completes
slightly more difficult tasks, such as replacing a dress with

two separate clothing items (blouse and shorts), while pre-
serving the realism of the synthesized image. Leveraging
diffusion to generate additional clothes-changed images is
paramount for enriching training data, as DLCR is equipped
to controllably and accurately increase the clothing diversity
of any given dataset.

10. Improving Existing Methods using DLCR
(cont.)

In Table 3 of the main paper, we showed how training any
Re-ID model simply only using generated data from stage 1
of DLCR still yields large improvements. To fully exhibit
the benefits of DLCR, we provide additional results in Table
A2, where we apply both stages of DLCR to these models.
When only using stage 1 of DLCR to train various Re-ID
models, large improvements of ~ 7% — 28% are observed
across many models (middle rows of Table A2). With the
introduction of progressive learning and prediction refine-
ment in stage 2 of DLCR, top-1 accuracy on standard Re-ID
models further increases by roughly 2 — 3% for a cumulative
increase of nearly & 10% — 30% over the baseline (last rows
of Table A2). Similarly, top-1 accuracy on CC-RelD models
improves by ~ 1 — 4% when adding stage 2 of DLCR, with
the larger improvement possibly coming from the explicit
clothes-invariance already instilled in these models. Thus,
while stage 1 of DLCR can be applied to any model for
significant performance gains, we further exhibit that using
both stages yields the best results across many standard and
CC-RelD models.

11. Visualizing DLCR’s Improvements
11.1. Qualitative Retrieval Examples

One way to visualize DLCR’s improvement over CAL is
shown in Figure A4, where we visualize the query-gallery
retrievals for both models during evaluation. In the top half
of the figure, DLCR correctly matches a query image with
multiple gallery images of the same subject, regardless of the
change in the subject’s clothing. In the bottom half, we show
how CAL fails on the same exact samples by erroneously re-
trieving images from the gallery of different subjects wearing
similar clothing items to the query image. Despite the fact
that CAL is explicitly designed for clothes-invariance, there
still appears to be some bias towards clothing during evalua-
tion. As we mention in the main paper, solely discriminative
approaches to CC-RelD are not currently sufficient and leave
significant room for improvement, such as utilizing genera-
tive approaches like DLCR. For example, one explanation
for CAL’s limitation could be the limited number of clothes-
changes in the training data which prevents the full use of
CAL’s clothes-invariant learning strategy. Hence, DLCR bet-
ter equips CC-RelD models to learn clothes-agnostic person
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Figure A3. Qualitative examples of our generated data for PRCC (row 1), LTCC (row 2) and CCVID (row 3) datasets. For each original
image, we show three inpainted versions. The prompts used to generate the inpainted samples are placed under the corresponding images.
These samples depict high-quality, diverse generated data that is prompt-aligned.

features through the use of its generated data (stage 1) and
training/testing strategies (stage 2).

11.2. t-SNE Feature Plots

As an additional way to visualize how DLCR improves
top-1 accuracy during retrieval, Figure A5 provides t-SNE
plots to compare learned person features between a base-
line CAL model and DLCR. As described in Sec. 4 of the

main paper, a query image is paired with a gallery image
during evaluation by retrieving the gallery image with the
most similar person features to the query image. An oracle
model would produce identical person features for a query
and gallery image if the same subject is in the image, re-
gardless of clothing, background, occlusions, body pose, etc.
In the left plot in Figure A5, we show the resulting query
and gallery person features from DLCR for five randomly



Top Gallery Retrievals

Figure A4. Qualitative retrievals of CAL+DLCR versus baseline CAL. For a given query image, the top-3 retrieved images from the gallery
are shown, with correct and incorrect retrievals outlined in green and red, respectively. Despite clothing changes between the query and
gallery images, CAL+DLCR retrieves the correct subject regardless of appearance. However, CAL still favors clothing items during retrieval,
often retrieving incorrect subjects from the gallery that share similar clothing items to the query. This shows that discriminative approaches
to clothing-invariance, such as CAL, can still be further improved using generative methods.

selected subjects in the PRCC testing set. For each query
and gallery image of a particular subject, DLCR correctly
produces person features that cluster in both an inter- and
intra-class fashion. Not only does each gallery feature of
a particular subject cluster with other gallery features of
the same subject, but the same clustering behavior occurs
between each query feature of a particular subject as well.
More importantly, the smallest distance between a query fea-
ture cluster and gallery feature cluster produced by DLCR
share the same subject ID, indicating correct test-time re-
trievals. However, this behavior is not seen for the same exact
subjects and samples when using a baseline CAL model, as
shown in the right plot of Figure A5. CAL does not produce
similar person features between query and gallery images of
the same subject, with the erroneous query-gallery clustering
examples explicitly highlighted with multi-colored bound-
aries. For example, the query feature cluster for Subject 272
is closer in distance to the gallery feature cluster of Subject 4,
decreasing top-1 performance since the wrong gallery image
would be retrieved.

11.3. Activation Maps

In Figure A6, we compare the feature maps of
CAL+DLCR with a baseline CAL model on the PRCC and
LTCC datasets. Notably, CAL+DLCR exhibits a stronger
focus on identity-related features. For instance, the DLCR
feature map in the LTCC examples prioritizes the subject’s
face over the footwear when making a prediction. Further-

more, DLCR retains the ability to leverage person-specific
features that are within the clothing region (e.g. body shape)
despite its invariance towards clothing, as seen in the PRCC
examples.

12. Optional: Discriminator-guided diffusion

Considering our downstream task of Re-ID training, it is
important to ensure that G4y, closely resembles the dis-
tribution from which Dy,.4;,, originated. The generated set
G'train 18 Obtained using a pretrained diffusion model, but it
has been shown that without additional fine-tuning, there can
be a moderate gap between the diffusion model’s generated
data and the real data distribution [25]. At the same time,
fine-tuning a diffusion model can become computationally
expensive and may lead to undesired results, like overfit-
ting [25, 36]. To avoid these problems, similar to [25], we
investigated using a discriminator d to guide the pretrained
diffusion model to generate data that is better aligned with
the training data distribution. Following [25], we train the
discriminator d4 to minimize the domain gap with respect
to the noisy examples at different timesteps from the real
(Dyrqin) and generated (Grq4r,) data sets. Consequently, the
employed training objective of dy (i.e. Lg) is to distinguish
between the real and generated examples:

Lq=—E[logds(zs,t) +log (1 —dy(34,1)], (5)
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Figure AS. t-SNE visualizations of the query and gallery features produced by CAL+DLCR and CAL for 5 randomly selected test subjects in
the PRCC dataset. With a baseline CAL model (right), the query feature cluster for Subject 272 are erroneously closer to the gallery feature
cluster for Subject 4, with the same issue between Subject 60 and 56. The incorrect clustering behaviors are marked with multi-colored
boundaries. In contrast, the gallery and query feature clusters produced by CAL+DLCR (left) for the same subjects correctly cluster together,
exhibiting DLCR’s direct impact in learning better discriminative features and improving top-1 accuracy.

Table A2. Results on PRCC when using both stages of DLCR
on various standard Re-ID and CC-RelD models. Adding stage 2
results in better mAP and top-1 accuracy values on every model,
with the green numbers in parentheses signifying cumulative im-
provement over the original baseline model. t denotes reproduced
results using open-source code.

Standard Re-ID Models

Model Top-1 mAP

PCB [49] 41.8 38.7
PCB + DLCR (Stage 1) 53.3 (+11.5) | 50.7 (+12.0)
PCB + DLCR (Stage 1 +2) | 56.5 (+14.7) | 51.0 (+12.3)

MGN [53] 33.8 359
MGN + DLCR (Stage 1) 62.5 (+28.7) | 57.6 (+21.7)
MGN + DLCR (Stage 1 +2) | 64.8 (+31.0) | 58.0 (+22.1)
HPM [12] 40.4 372

HPM + DLCR (Stage 1) 56.0 (+15.6) | 50.9 (+13.7)
HPM + DLCR (Stage 1 +2) | 57.5(+17.1) | 51.2 (+14.0)
CC-RelD Models

Model Top-1 mAP

CAL §[15] 55.2 55.8
CAL + DLCR (Stage 1) 62.9 (+7.7) 60.9 (+5.1)
CAL + DLCR (Stage 1 +2) | 66.5 (+11.3) | 63.0 (+7.2)

AIM 1 [59] 55.7 56.3
AIM + DLCR (Stage 1) 60.2 (+4.5) | 59.0 (+2.7)
AIM + DLCR (Stage 1 +2) | 61.9(+6.2) | 60.5 (+4.2)
GEFF [7] 83.6 64.0
GEFF + DLCR (Stage 1) 84.6 (+1.0) | 66.0 (+2.0)
GEFF + DLCR (Stage 1 +2) | 85.8 (+2.2) | 66.2 (+2.2)

where ¢ ~ Z/{([()’T])’ Ty ~ q(.’Iit|£L’),LI; ~ Z’[(Dtrain) and
i.t ~ q(jtl‘%)ai' ~ M(Gtrain)~

We use the trained discriminator to design a score func-
tion that guides the generative process to synthesize samples
that are highly likely to be classified as real by the discrimi-

Input Image  Baseline Ours Input Image  Baseline Ours
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Figure A6. Feature map comparison between DLCR and a baseline
CAL model. DLCR enforces better robustness against clothing
variations in CC-RelD.

nator. The respective score function is the following:

dd)(llft, t)

hy =V, log —$\F0Y
¢ BT Ay (e, t)

(6)
We incorporate this score function A4 into noise estimation
as follows (see Sec. 12.1 for the full derivation):

€p(xe,t) = —0oy - hy, @)

where o; = /1 — @y is the standard deviation of ¢(z;|x).
Then, we guide the reverse denoising process of Stable Dif-
fusion by adding the noise estimation from our discriminator,
as follows:

e?(xt,t) = eg(x¢,t) +w - €4y, t), ®)

where w denotes the weight of discriminator guidance.
Finally, we generate an improved version of Gy;.q;,, by
modifying the mean psy(2,t) of the reverse denoising pro-



cess (Eq. (3)) to include the discriminator-guided noise esti-
mation ey (x4, t):

1 1-
u'g(xtat) = (xt - —at ¢(xt7t)> . (9)

£ O \/1—0_41560

We found that in some cases, using discriminator-guided
diffusion improved results on PRCC and CCVID by 1 — 2%,
however the process is optional since it requires some ad-
ditional training of a discriminator and re-generation of the
data (following the process proposed in [25]). In certain
cases where data using a pretrained diffusion model is not
generating sufficiently in-domain data, we included this sec-
tion as one potential solution as well as a strong area for
future work.

12.1. Details Regarding Discriminator Guidance

In this section, we will present the derivations for Eq. (6)
and Eq. (7), while also providing more intuitive explanations
for them. Before describing these details, we remind the
reader that in the continuous formulation [47] of diffusion
models, the forward process is described by a stochastic
differential equation (SDE):

8(Et = f(xtat)at + g(‘rt)aw7 (10)

and the reverse process is also a diffusion process [1,47],
given by the following SDE:

Oz, = [f (2, t) — g () Vs log q(20)]0t + g () D, (11)

where f is called the drift coefficient, g denotes the diffu-
sion coefficient and V,; log g(x) is called the score function.
This score function is what is estimated by diffusion models
in order to solve the reverse process.

Regarding discriminator guidance [25], we emphasize
that its objective is to address the situations when the dif-
fusion model converges to a local optimum, thereby failing
to provide the most accurate noise or score estimations. In
a formal sense, when dealing with these cases, it becomes
necessary to correct the marginal distribution pg(z;) of the
forward process (Eq. (10)), which originates with samples
drawn from pg (o), in order to match the marginal distribu-
tion ¢(x) of the forward process initiated with samples from
q(zo). Dongjun ef al. [25] introduce this correction term as
an additional score function that depends on a discriminator,
and the term is used in the reverse process at each denoising
step. We derive this term starting with the following simple
observation:

— ol _Q(xt)
q(xt)_pe( t) p@(xt)’ (12)

and then, if we apply the logarithm and the gradient, we get:

Ve logqery) = Vi logpe(xy) + Vy log M. (13)
pe(CCt)

Eq. (13) implies that if we want to obtain the optimal score
function (V log ¢(x+) - the one required to solve Eq. (11)),
we can correct the model score estimation V, log pg () us-
ing the log-gradient of the rate %. However, we cannot
compute this rate in practice, thereby Dongjun et al. [25]
propose to estimate it via a discriminator. More precisely,
a discriminator, dy(x, t), is trained to distinguish between
real and generated samples. After the training is completed,
dg(z¢,t) will return the probability for the sample z; of
being a real example at every timestep. Thus, it is an esti-
mation for ¢(x;) and, in a similar manner, 1 — dg (¢, t) will
approximate pg(x¢). Therefore, we use:

d¢(1’t7 t)

hy =V, log —\Ttt)
¢ vtOgl—d¢,(:ct,t)

(14)
as a correction term in the reverse process, which is the same
hg as defined in Eq. (6).

Moving further, Eq. (7) denotes the relation between the
noise estimation and the corresponding score function. We
will derive a more general form of this equation by exploiting
the reparameterization trick for a Gaussian distribution and
Tweedie’s formula [41].

Given an arbitrary Gaussian distribution N (z; i1, 0%I)
and its corresponding density function p(z). The reparame-
terization trick applied for distribution is the following:

r=p+o-ec &< p=x—0-6e~N(0I). (15

In statistical literature, Tweedie’s formula generally
shows how to express the mean of an arbitrary Gaussian
distribution (1) given its samples (z) and the score function
(V. logp(z)). Specifically, we apply Tweedie’s formula on
the previous Gaussian distribution and we obtain the follow-
ing result:

p=z+0°V,logp(z). (16)

If we combine the results from Eq. (15) and Eq. (16), then
we obtain the following:

€=—0Vy Ing(x)a (17)

and we can apply this result for the discriminator score
function denoted by hy and o = /1 — ¢ to obtain Eq. (7):

6¢((Et,t) = —\/1—0_{th¢. (18)
13. Utility of LLaVA and LLaMA

In this section, we provide reasoning behind utilizing
LLaVA and LLaMA to extract clothing descriptions of the
clothing IDs present in a dataset.

In Table A3, we provide the results obtained for three
cases on the PRCC dataset. In the first row, we ask only



LLaMA to give us random sets of clothing items for each
specific body part (top, bottom, footwear) for clothes inpaint-
ing. In the second row, we only use LLaVA to create clothing
prompts from a single image of a given clothing ID (no use
of LLaMA summarization). We compare these two ablations
to DLCR’s main results in the third row, where both LLaVA
and LLaMA are used to construct prompts for clothes in-
painting. Table A3 highlights that it is beneficial to generate
data from clothes that are already (or close to) present in the
dataset. This aspect is intuitive because during training, if
two subjects are wearing relatively identical clothing items,
a CC-RelD model cannot exploit the clothing information to
classify a subject. Thus, the model must rely on ID-specific
features to differentiate between the subjects. Moreover, we
illustrate the robustness of our method to different LLMs in
Table A4, where we compare LLaVA with InstructBLIP [7]
for extracting textual clothing descriptions. We observe very
similar results, implying that the selection of LLMs has a
minimal impact on DLCR’s performance. Overall, our use
of LLaVA and LLaMA is beneficial for CC-RelD perfor-
mance, as seen in the &~ 2% increase in both top-1 accuracy
and mAP.

Table A3. Results on the PRCC dataset when generating data
with and without extracted text prompts from LLaVA and LLaMA.
Cumulative improvements over the baseline are shown in green.

PRCC
LLaVA LLaMA Top-1 AP
X v (random clothing prompts) 60.7 58.9
v X 61.6 (+0.9) | 60.1 (+1.2)
v v 62.9 (+2.2) | 60.9 (+2.0)

Table A4. Stage 1 DLCR results on PRCC with different VLMs.

Visual Language Model (VLM) | Top-1 | mAP
LLaVA 62.9 | 609
InstructBlip 629 | 613

14. Progressive Learning Intuition

As discussed in Sec. 14, one limitation of generating so
much additional data would be the impact on training time.
The choice to inject the generated data at the batch level was
largely driven by this point, as shown in Table A5. On the
other hand, Figure A7, provides a t-SNE plot to visualize and
compare the principal components between our generated
images and the original images for three random subjects
from the PRCC dataset. It is easy to notice that the inclusion
of generated samples leads to a larger variance in the data,
thus making the task of differentiating between users more
challenging. To alleviate this issue at the early stages of
training, we use a smaller number of generated samples

and gradually incorporate additional generated samples as
training progresses. This strategy allows the model to more
effectively adapt to the increasingly diverse distribution of
the generated data, as illustrated by the performance shown
in Table A1, row 5.
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Figure A7. t-SNE plot of our generated data versus the original data
for three random subjects in the PRCC dataset. As our generated
data introduces a larger variance in the training distribution, our
progressive learning strategy is effective in optimizing CC-RelD
performance.

Table AS. Training times with and without progressive learning
when using DLCR generated data. With identical experimental
setups, progressive learning not only reduces training time, but also
provides some performance boost (see Table A1).

Progressive Learning ‘ PRCC Training Epoch Time (seconds) | ‘ Best Top-1 1 ‘
X 691s 64.0
v 65s 65.0

15. Ablation on Number of Generated Images
(K)

As detailed in the implementation details of the main
paper, we set the number of inpainted versions for each
original training image K = 10. In Figure A8, we perform
an ablation on the values of K and provide the resulting top-1
accuracies on the PRCC dataset. Notably, the improvements
observed when increasing K beyond 10 are minimal, hence
explaining why we do not simply generate more images to
increase the size of our contributed data. We set K = 10
as it strikes a favorable balance between the performance
gain facilitated by the additional generated data, and the time
consumed by the generation process. However, the DLCR
generation process is open-source and can be used by others
to generate more data for cases such as large-scale CC-RelD
pretraining. Note that the results presented in Figure A8



are obtained by simply concatenating the generated data
with the initial training set of PRCC, i.e. we do not perform
progressive learning, discriminator guidance or prediction
refinement in this study.
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Figure A8. Top-1 accuracy rates achieved for various values of
K (number of inpainted images per original image) by DLCR
on PRCC dataset. The accuracy improvements for K > 10 are
marginal. Therefore, we standardized the value of K to 10 for all
our experiments.

16. Time and Space Complexity of DLCR

We provide explicit time and space complexities for each
component of DLCR in Table A6. Specifically, we report
the throughput of each of our components, measured by
how many images each component can process per second,
as well as the memory each component takes on the GPU.
Despite our use of LLMs and diffusion, DLCR as a whole
is still fairly computationally inexpensive since we only
use these large models in an inference setting. During the
generation of CC-RelD training data via diffusion inpainting,
which is an offline process (Stage 1 of DLCR), we use 50
denoising steps at a resolution of 768 x 256. Then we apply
stage 2 and train the CC-RelID model with the combination
of original and generated data. During inference, for query
inpainting in our prediction refinement strategy, we reduce
the denoising steps from 50 to 10 and divide the image
resolution by half, which results in a nearly ~ 3x speedup
while maintaining similar performance. In summary, stage
1 of DLCR can be fully implemented on a single NVIDIA
A100 80GB GPU (or a A6000 48GB GPU with some tricks
to fit the LLMs).

17. Limitations and Future Work

Limitations: One limitation of DLCR is low-quality gener-
ated images on low-resolution images. On low-resolution or
small-scale images, not only can the ID-preserving mask be
inaccurate, but the diffusion model itself struggles to prop-
erly inpaint the clothing regions correctly. Some datasets
mentioned in this paper have these types of images, and the

Table A6. Analysis of time and space complexity for each com-
ponent in DLCR. Throughput is measured in images/sec, with all
experiments run on a single NVIDIA A100 80GB GPU.

DLCR Component Throughput (img/sec) T | Memory |
ID-Preserving Mask Extraction 61.6 1GB
Clothes Description Extraction 4.0 56GB

Training Inpainting 0.89 4GB

Query Inpainting 3.33 2.6GB
Prediction Refinement (Algorithm 1) 642.6 < 1GB

generated data on these small corner case images can be low
quality and incorrect/not prompt-aligned. Due to our use of a
pretrained Stable Diffusion model, one possible solution is to
fine-tune Stable Diffusion on low-resolution images for bet-
ter performance. Diffusion models have also shown strong
promise in image super-resolution, which could be included
in the DLCR generation pipeline to deal with low-resolution
images. Another limitation could be the diminishing returns
of additional data (Fig. A8). While DLCR will most likely
show significant performance gains in data-scarce domains,
finding a method to better leverage mass amounts of data
while mitigating diminishing returns would heavily impact
the positive effect DLCR has on downstream performance.

Future Work: One possible direction of future work for
DLCR could be investigating our test-time prediction strat-
egy compared to other re-ranking methods. In the context
of CC-RelD, we show that our prediction refinement strat-
egy is compatible with other re-reranking methods such
as GEFF [2], but further experimentation could yield even
higher SOTA results. Another avenue of future use is lever-
aging the DLCR generation method for other vision tasks
that are compatible with localized image editing. For ex-
ample, our method of generating data with preserved areas
using a binary mask could apply to medical imaging for data
augmentation.



