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We further explore LIME’s applicability to other models
like Prompt-to-Prompt [18], HIVE [54], and InstructDif-
fusion [16], showing improved localized editing through
quantitative and qualitative results across datasets like Mag-
icBrush [53], PIE-Bench [21], and EdilVal [5]. We pro-
vide ablation studies and implementation details and discuss
broader impacts like potential misuse risks balanced against
benefits like enhanced creative expression. The material un-
derscores LIME’s ability to enable precise localized image
edits while preserving surrounding context.
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A. Additional Experiments
A.1. Applicability of LIME to other models

The core concepts behind LIME make it broadly applica-
ble to a variety of image editing models, including Prompt-
to-Prompt [18], HIVE [54], and InstructDiffusion [16]. In-
tegrating LIME into these methods offers the potential for
enhanced performance in the following ways:

Prompt-to-Prompt is a prompt-based editing method [18].
Unlike instruction-based editing techniques such as IP2P, an
input caption and an output caption are needed to execute the
desired image edit. Moreover, since there is no condition on
the input image, an image inversion step is required before
applying the edit. Prompt-to-Prompt does offer localized
editing capabilities, with an extension of the Blend option,
which mixes the diffusion processes of two images (original
and edited). However, as seen in Fig. 8, integrating the edit
application of LIME into Prompt-to-Prompt enables even
more precise localized edits. This component, see Sec. 4.2,

ensures that changes are confined to the RoI while preserving
the shapes and context of surrounding elements. The official
code base1 is used for comparison.

Inverted Image Prompt-to-Prompt
w/o Blend

Prompt-to-Prompt
w/ Blend

Prompt-to-Prompt
+ LIME

Figure 8. The integration of LIME into Prompt-to-Prompt [18].
Red circles and arrows emphasize the localization issues of Prompt-
to-Prompt model. The following textual information is used: input
caption: A photo of fingernails and output caption: A photo of
glitter fingernails.

HIVE is a fine-tuned version of IP2P on an expanded
dataset. Further refinement is achieved through fine-tuning
with a reward model, which is developed based on human-
ranked data. Table 3 shows the results on the MagicBrush
dataset. HIVE [54] improves the performance of IP2P (com-
pare the first and third rows), and further improvement is
achieved by fine-tuning HIVE on MagicBrush training set,
MB with ✁ stands for it in Tab. 3, (compare the third and
fifth rows). For both base HIVE and the version fine-tuned
on MB, LIME can further significantly improve performance
(compare the third and fourth rows and fifth and sixth rows.).

Fig. 9 presents a qualitative comparison before and after
integrating LIME into the HIVE model on samples from the
MagicBrush dataset. Figure 9-(a) displays the color change
of an object in a scene. While HIVE can effectively im-
plement the edit, it inadvertently alters the structure of the
vase and the color of another vase in the background, as
highlighted by the red circle. However, with our model in-
tegrated, HIVE accurately targets the plants for the desired
edit without affecting unrelated areas. In Fig. 9-(b), HIVE
fails to recognize one of the fingernails and does not cor-
rectly apply the intended edit, indicated by the red circle and
arrows. Additionally, HIVE alters the background color to
blue, which was mentioned in the edit prompt. In contrast,
HIVE, with our model integration, precisely applies edits to
the region of interest, such as the fingernails, without miss-
ing any parts or altering areas outside the region of interest.
Lastly, Fig. 9-(c) demonstrates another instance where HIVE
performs an entangled edit, changing the skin color of a

1https://github.com/google/prompt-to-prompt/

https://github.com/google/prompt-to-prompt/


Table 3. HIVE + LIME Evaluation on MagicBrush [53]. The numbers for others are sourced from [53], while values for our method are
computed by following the same protocol.The integration of LIME surpasses the base model performance, e.g., HIVE and HIVE w/MB.

Methods Single-turn Multi-turn
MB L1 → L2 → CLIP-I ↑ DINO ↑ CLIP-T ↑ L1 → L2 → CLIP-I ↑ DINO ↑ CLIP-T ↑

IP2P [7] ✂ 0.112 0.037 0.852 0.743 0.276 0.158 0.060 0.792 0.618 0.273
IP2P [7] ✁ 0.063 0.020 0.933 0.899 0.278 0.096 0.035 0.892 0.827 0.275

HIVE [54] ✂ 0.109 0.034 0.852 0.750 0.275 0.152 0.056 0.800 0.646 0.267
HIVE [54] + LIME ✂ 0.051 0.016 0.940 0.909 0.293 0.080 0.029 0.894 0.829 0.283
HIVE [54] ✁ 0.066 0.022 0.919 0.866 0.281 0.097 0.037 0.879 0.789 0.280
HIVE [54] + LIME ✁ 0.053 0.016 0.939 0.906 0.300 0.080 0.028 0.899 0.829 0.295

woman in the scene when the intended edit was to change
the outfit color, as shown by the red arrow. The integration of
our model enables localized and separate edits on the input
image based on the edit instructions, ensuring that only the
specified changes are made.

Input Image HIVE HIVE + LIME

(a) Change the plants color to blue.

(b) Put blue glitter on fingernails.

(c) Make her outfit black.

Figure 9. The integration of LIME into HIVE [54]. Red circles
and arrows emphasize the localization issues of HIVE model. HIVE
+ LIME enables localized and effective edits.

InstructionDiffusion (IDiff) is another IP2P-based
method [16]. Integrating LIME into IDiff enhances its per-
formance. IDiff achieved scores of 0.085, 0.03, 0.90, 0.83,
and 0.30 while the integration of LIME into IDiff improves
the scores to 0.071, 0.02, 0.92, 0.86, and 0.30 for L1, L2,
CLIP-I, DINO, and CLIP-T, respectively, on MagicBrush
test dataset. The results can also be comparable with Tab. 3.

Input IDiff + LIME

Instruction: Replace the surfboards with flowers.

A.2. MagicBrush Mask Annotations

As mentioned in Sec. 5.5, the mask annotations for the
MagicBrush dataset [53] are not very tight around the edit
area which might result in worse edit quality when we use
them rather than the segmentation extracted by LIME. We
show qualitative results highlighting the problem in Fig. 10.
Our method directly uses the identified mask during the
editing process, therefore, it is important for the masks to be
as tight as possible around the edit area to apply localized
edits. The loose GT masks of MagicBrush explain why our
model achieves worse performance in Tab. 2 when using
GT masks. We highlight the significance of precise masks
with red circles in Fig. 10. When precise masks are provided
to LIME, localized edits can be achieved. For the first row
- (a), the handle of the racket can be preserved if the mask
has a precise boundary between the handle and outfit in the
occluded area. Moreover, the second row - (b) shows that
if the mask in the MagicBrush dataset is used during the
edit, the method changes the color of the blanket as well.
However, with the precise mask extracted by our method,
the edit can distinguish the objects in the area and apply
localized edits.

These results highlight the quality of the edit masks ex-
tracted by our method in an entirely self-supervised way and
hint at possible further developments where our contribution
could be used to refine the annotations of existing datasets
or speed up the creation of new ones.



Table 4. Evaluation on PIE-Bench [21]. Comparison across ten edit types shows the integration of LIME outperforming base models on
instruction-based editing models. GT Mask stands for ground-truth regions of interest masks.

Structure Background Preservation CLIP Similarity
Methods Distance→103 → PSNR ↑ LPIPS→103 → MSE→104 → SSIM→102 ↑ Whole ↑ Edited ↑
InstructDiffusion [16] 75.44 20.28 155.66 349.66 75.53 23.26 21.34
DirectInversion + P2P [21] 11.65 27.22 54.55 32.86 84.76 25.02 22.10
IP2P [7] 57.91 20.82 158.63 227.78 76.26 23.61 21.64
IP2P [7] + LIME 32.80 21.36 110.69 159.93 80.20 23.73 21.11
IP2P w/MB [53] 22.25 27.68 47.61 40.03 85.82 23.83 21.26
IP2P w/MB [53] + LIME 10.81 28.80 41.08 27.80 86.51 23.54 20.90
HIVE [54] 56.37 21.76 142.97 159.10 76.73 23.30 21.52
HIVE [54] + LIME 37.05 22.90 112.99 107.17 78.67 23.41 21.12
HIVE w/MB [53] 34.91 20.85 158.12 227.18 76.47 23.90 21.75
HIVE w/MB [53] + LIME 26.98 26.09 68.28 63.70 84.58 23.96 21.36

Input Image GT + Edit RoI + Edit

(a) Make her outfit black.

(b) Can the bed be blue?

Figure 10. MagicBrush Mask Annotations. Ground truth (GT)
refers to mask annotations in MagicBrush [53]. RoI indicates
inferred masks from our proposed method. Red circles on the
edited images (+ Edit) highlight area where the precise localization
of the edits can be appreciated.

A.3. More Quantitative Results
PIE-Bench [21] The benchmark includes 700 images in 10
editing categories with input/output captions, editing instruc-
tions, input images, and RoI annotations. Metrics for struc-
tural integrity and background preservation are derived from
cosine similarity measures and image metrics like PSNR,
LPIPS, MSE, and SSIM, while text-image consistency is
evaluated via CLIP Similarity.

Quantitative analysis on PIE-Bench [21] demonstrates
the effectiveness of our proposed method. Compared to
baseline models like IP2P [7] and the fine-tuned version
on MagicBrush [53] and HIVE [54], our method achieves
significantly better performance on metrics measuring struc-
ture and background preservation. This indicates that our
approach makes localized edits according to the instructions
while avoiding unintended changes to unaffected regions.
Edited measures CLIP similarity between edit prompt and
edited area, and with Background Preservation provides a
measure of localized edits. As seen in Tab. 4, our method is
better if both metrics are considered together. At the same
time, our method obtains comparable results to base models
on the CLIP similarity score, showing that edits are faithfully

applied based on the textual instruction. A comprehensive
comparison is presented in Tab. 4. Overall, the quantita-
tive results validate that our method can enable text-guided
image editing by making precise edits solely based on the
given edit instruction without altering unrelated parts.

EditVal [5] The benchmark offers 648 image editing oper-
ations spanning 19 classes from the MS-COCO dataset [26].
The benchmark assesses the success of each edit with a
binary score that indicates whether the edit type was suc-
cessfully applied. The OwL-ViT [31] model is utilized to
detect the object of interest, and detection is used to assess
the correctness of the modifications.

Table 5. Evaluation on EditVal [5]. Comparison across six edit
types shows our method outperforming eight state-of-the-art text-
guided image editing models. The numbers for other methods are
directly taken from the benchmark dataset [5].

Method O.A. O.R. P.R. P.A. S. A.P. Avg.
SINE [55] 0.47 0.59 0.02 0.16 0.46 0.30 0.33
NText. [33] 0.35 0.48 0.00 0.20 0.52 0.34 0.32
IP2P [7] 0.38 0.39 0.07 0.25 0.51 0.25 0.31
Imagic [22] 0.36 0.49 0.03 0.08 0.49 0.21 0.28
SDEdit [29] 0.35 0.06 0.04 0.18 0.47 0.33 0.24
DBooth [42] 0.39 0.32 0.11 0.08 0.28 0.22 0.24
TInv. [15] 0.43 0.19 0.00 0.00 0.00 0.21 0.14
DiffEdit [9] 0.34 0.26 0.00 0.00 0.00 0.07 0.11

IP2P [7] + LIME 0.48 0.49 0.21 0.34 0.49 0.28 0.38

Our method exhibits superior performance across various
edit types in EditVal benchmark [5], particularly excelling
in Object Addition (O.A.), Position Replacement (P.R.), and
Positional Addition (P.A.), while achieving second-best in
Object Replacement (O.R.). It performs on par with other
methods for edits involving Size (S.) and Alter Parts (A.P.).
LIME advances the state-of-the-art by improving the average
benchmark results by a margin of 5% over the previous best
model, see Tab. 5.



A.4. Visual Comparison to state-of-the-art-methods
A.4.1 VQGAN-CLIP

As shown in Fig. 6a, VQGAN-CLIP [10] has better results
on the CLIP-T metric. This is expected since it directly fine-
tunes the edited images using CLIP embeddings. However,
as seen in Fig. 11, the edited images from VQGAN-CLIP
fail to preserve the details of the input image. On the other
hand, our method successfully performs the desired edit by
preserving the structure and fine details of the scene and
results in a similar CLIP-T score as the one of the ground
truth edited images in the MagicBrush dataset.

Input Image Ground Truth VQGAN-CLIP [10] Ours

Make her outfit
black. CLIP-T: 0.306 CLIP-T: 0.486 CLIP-T: 0.314

Replace the
ground with a

forest.
CLIP-T: 0.311 CLIP-T: 0.420 CLIP-T: 0.318

Figure 11. Investigating CLIP-T for VQGAN-CLIP [10]. CLIP-
T metrics are reported below each image and calculated between
the output caption and the corresponding image. Input images and
edit instructions are pictured in the first column. Ground truth edit
images are taken from the MagicBrush dataset.

A.4.2 Diffusion Disentanglement

Wu et al. [50] propose a disentangled attribute editing
method. Since it also claims disentangled (localized) edits,
we visually compare our method + IP2P with Diffusion Dis-
entanglement. This method is not disegned for instruction-
based editing, so we use input and output captions during the
comparison. Figure 12 shows edit types such as (a) texture
editing and (b) replacing the object with a similar one. Diffu-
sion Disentanglement on (a) alters the background objects
in the image, e.g., adding snow on and changing the shape
of the branch, and also changes the features of the object of
interest, e.g., removing the tail of the bird. On (b), it fails to
perform the desired edit altogether. Moreover, it requires a
GPU with > 48 GB RAM2, and one image takes approxi-
mately 10 minutes on an NVIDIA A100 80GB to generate
the edited version. In comparison, LIME achieves higher
visual quality and takes 25 seconds to complete on NVIDIA
A100 40GB with a GPU RAM usage of 25 GB.

2https://github.com/UCSB-NLP-Chang/DiffusionDisentanglement

Input Image DiffusionDisent. [50] Ours

(a) Change the robin to a silver robin sculpture.

(b) Turn the brown horse into a pink unicorn.

Figure 12. Diffusion Disentanglement [50] Qualitative Compar-
ison. Edits are obtained by using the global description of the input
image and the desired edit by concatenating them with ’,’.

A.4.3 Blended Latent Diffusion

As shown in Tab. 4, Blended Latent Diffusion [2] has better
results than baselines and our method. However, as shown
in Fig. 13, even if their method can perform the desired
edit on the RoI from the user, (a) it distorts the location of
the features, e.g., heads of the birds, and (b) it loses the
information of the object in the input image and creates a
new object in the RoI, e.g., blanket in (b). On the other hand,
our method performs visually appealing edits on the input
images considering the given edit instructions by preserving
as many details from the input image as possible. This is
also highlighted by a significantly lower Distance metric for
our method in Tab. 4.

Input Image BlendedDiffusion [2] Ours

(a) Turn the real birds into origami birds.

(b) Change the animal from a cat to a dog.

Figure 13. BlendedDiffusion [2] Qualitative Comparison. Edited
images based on input images and edit instructions reported below
each row. The images for BlendedDiffusion are taken from the
PIE-Bench evaluation [21].

https://github.com/UCSB-NLP-Chang/DiffusionDisentanglement#requirements


A.5. Qualitative comparison on segmentation maps
Our method proposes a segmentation method based on the

clustering of intermediate features of the diffusion process.
In this section, we provide a qualitative comparison to other
segmentation methods that could be used as an alternative to
this strategy. LPM [36] uses self-attention features from one
resolution, such as 32↓ 32, while our method leverages the
intermediate features from different resolutions to enhance
the segmentation map. Then, both apply a clustering method
to find the segments in the input image. Another way to
find segments is by using large segmentation models, e.g.,
SAM [23], ODISE [51] . . . . As seen in Fig. 14 (i), large
segmentation models cannot detect the transparent fin of the
fish, while LPM and ours can. Moreover, LPM utilizes only
one resolution, so it cannot find rocks in the river separately.
As seen in Fig. 14 (ii), ODISE [51] and SAM [23] fail to
segment minute object parts, like fingernails, while LPM
and ours can find those segments. Furthermore, our method
provides precise boundaries and segments in higher resolu-
tions than LPM. Moreover, LPM uses Stable Diffusion [41]
and requires real image inversion to find segments, while our
method does not since it is based on IP2P [7]. For this rea-
son, LPM requires more than 1 minute per image, while our
proposal takes only 10-15 seconds per image. As a result, in
a direct comparison to LPM, our method has the advantage
of having higher-resolution segmentation maps with more
details, and it is significantly faster. The publicly available
official implementations of LPM3, SAM4 and ODISE5 are
used for the results in Fig. 14. Additionally, the same num-
ber of clusters is used for LPM and ours to achieve a fair
comparison.

Input Image LPM [36] SAM [23] ODISE [51] Ours

Figure 14. Segmentation Qualitative. Comparison between the-
state-of-art segmentation methods on challenging examples. In
the first example, both LPM and LIME can detect the fish fin,
while SAM and ODISE cannot. Moreover, LIME provides a higher
resolution than LPM. In the second example, SAM and ODISE fail
to identify fingernails. Although LPM can find them, it delivers
low-resolution and imprecise segments. Our method, however,
accurately identifies fingernails and offers precise boundaries.

3https://github.com/orpatashnik/local-prompt-mixing
4https://segment-anything.com/demo
5https://github.com/NVlabs/ODISE

A.6. Comparison with open-vocabulary segmentors

An alternative to our proposed edit localization step,
Sec. 4.1, would be to use off-the-shelves Open Vocabulary
Segmentation models (OVS) and combine them with our
edit application, see Sec. 4.2. A key difference between
OVS and our localization method is that OVS requires an ad-
ditional input, which is the object of interest to segment, and
this could be a strong limitation in an instruction edit setting
because the target is not always obvious from the instruc-
tion. As seen in Tab. 6, both, SEEM [56] and OV-SEG [25],
significantly underperform compared to LIME.

Table 6. OVS methods for localizing the edit. We replace the
edit localization part with OVS methods to show the significance
of our proposed localization method. The methods are evaluated
on MagicBrush dataset.

Method L1 → L2 → CLIP-I ↑ DINO ↑ CLIP-T ↑
IP2P [7] 0.112 0.037 0.852 0.743 0.276

M
as

k
Ty

pe
OV-SEG [25] 0.084 0.031 0.887 0.851 0.283
SEEM [56] 0.079 0.022 0.903 0.866 0.289

IP2P + LIME 0.058 0.017 0.935 0.906 0.293

In addition to quantitative analysis in Tab. 6, we provide
a qualitative comparison for localizing the edit. As seen in
Fig. 15, the OVS methods do not provide precise RoI for
the edit instructions even when provided with a curated addi-
tional input, e.g., object of interest. On the other hand, our
proposed localization method in Sec. 4.1 provides precise
and relevant RoIs without additional requirements.

Input Image OV-SEG [25] SEEM [56] Ours

Make her outfit black.

Put blue glitter on fingernails.

Figure 15. OVS Method for Localization. RoI examples that are
found by different OVS methods, OV-SEG [25] and SEEM [56],
and our proposal in Sec. 4.1. Since OVS methods require object of
interest, words with bold are used for the object of interest.

https://github.com/orpatashnik/local-prompt-mixing
https://segment-anything.com/demo
https://github.com/NVlabs/ODISE


A.7. Ablation study
A.7.1 Related Token Rewarding

In addition to the ablation study in Sec. 5.5, we also ana-
lyze token selection during cross-attention regularization as
defined in Sec. 4.2. Instead of regularizing the attention of
unrelated tokens, such as <start of text>, padding, and stop
words, by penalizing it, we could think of doing the opposite
and give high values to relevant tokens (denoted as S̃) within
the RoI as reported in the following equation:

R(QK
T
,M) =

{
QK

T
ijt + ↔, if Mij = 1 and t ↗ S̃

QK
T
ijt, otherwise,

(4)
This assignment guarantees that relevant tokens related to

edit instructions have high scores after the softmax operation.
As seen in Tab. 7, there is no significant improvement if
the unrelated tokens are penalized instead of awarding the
related tokens. However, penalizing the unrelated tokens
gives the freedom to distribute the attention scores unequally
among relevant tokens. Thus, it allows for a soft assignment
of areas of the image among the related tokens.

Table 7. Ablation Study on Token Selection. For fair comparison,
all parameters are the same for all settings except the ablated pa-
rameter.

Method L1 → L2 → CLIP-I ↑ DINO ↑ CLIP-T ↑
IP2P [7] 0.112 0.037 0.852 0.743 0.276

Related 0.065 0.018 0.930 0.897 0.292
Unrelated 0.058 0.017 0.935 0.906 0.293

In addition to quantitative analysis on the MagicBrush
dataset, Fig. 16 shows the attention scores for rewarding
related tokens vs regularizing unrelated tokens. Even though
the final edit results and the last column are not significantly
different, unrelated token regularization results in uneven
attention scores among related tokens, while related token
regularization leads to equal attention scores.

Token-based cross-attention probabilities

U
nr

el
at

ed
R

el
at

ed

Figure 16. Ablation study on related token rewarding. Instead
of regularizing the unrelated tokens, see the first row, we ablate
the opposite which is rewarding the related tokens by giving + →
within RoI, see the second row.

A.7.2 Clustering Method Alternatives

Since our implementation uses KMeans, it requires a number
of clusters parameter to be decided and fixed. While in the
main paper, we show that a good tuning of this hyperpa-
rameter works robustly across all the evaluated datasets, in
this section, we perform a preliminary exploration of alterna-
tive clustering techniques that would relax this assumption.
We replace K-means with Agglomerative Clustering, which
does not require this parameter. For this implementation, we
use the cosine similarity metric between features since [46]
shows that the cosine similarity provides significant infor-
mation about semantics. We provide a minimum distance
threshold, which can be between 0-1, and it automatically
determines the number of clusters. The higher the threshold,
the more clusters. As seen in Tab. 8, this variation achieves
similar performance by properly tuning the distance thresh-
old. This ablation study proves that our method is robust for
selecting the clustering method, and any clustering method
can be combined with LIME.

Table 8. Ablation Study on Clustering Method. For all exper-
iments, IP2P is the base architecture and the evaluation is on the
MagicBrush dataset. Each parameter is modified separately, while
other parameters are kept fixed to isolate their impact.

Method L1 → L2 → CLIP-I ↑ DINO ↑ CLIP-T ↑
IP2P [7] 0.112 0.037 0.852 0.743 0.276

#
of

C
lu

st
er

s 4 0.080 0.022 0.923 0.885 0.295
8 0.058 0.017 0.935 0.906 0.293
16 0.062 0.018 0.933 0.903 0.294
32 0.064 0.018 0.932 0.901 0.291

D
ist

an
ce

Th
re

sh
ol

d 0.7 0.080 0.022 0.927 0.893 0.294
0.6 0.076 0.021 0.929 0.894 0.294
0.5 0.063 0.018 0.933 0.902 0.293
0.4 0.072 0.020 0.930 0.896 0.293

A.8. More Qualitative Results
This section presents additional qualitative results derived

from our method, emphasizing its improved effectiveness
against established baselines, such as IP2P [7] and IP2P
w/MB [53]. Figure 17 illustrates the application of our
method in localized image editing tasks. Specifically, it
demonstrates our method’s proficiency in altering the color
of specific objects: (a) ottoman, (b) lamp, (c) carpet, and
(d) curtain. Unlike the baseline methods, which tend to
entangle the object of interest with surrounding elements,
our approach achieves precise, disentangled edits. This is
not achieved by the baseline, which tends to alter multiple
objects simultaneously rather than isolating changes to the
targeted region. The disentangled and localized edits show-
cased in Fig. 17 highlight the potential of LIME in end-user
applications where object-specific edits are crucial.

Figure 19 demonstrates additional examples of our



Input Image Baseline + LIME

(a) Change color of ottoman to
dark green.

(b) Change color of lamp to dark green.

(c) Change color of carpet to dark blue.

(d) Change color of curtain to purple.

Figure 17. A use-case of the proposed method. Changing the
color of different objects is shown by comparing baselines and our
method. Our method performs disentangled and localized edits for
different colors and different objects in the scene.
method’s performance on the Emu-Edit test set [44], the
MagicBrush [53] test set and the PIE-Bench [21] dataset.
Our approach effectively executes various tasks, such as (a)
replacing an animal, (b) modifying parts of animals, and
(c) changing the color of multiple objects. As illustrated in
Fig. 19, our method demonstrates significant improvements
over existing baselines. For instance, while baseline models
like IP2P w/MB in (a) achieve reasonable edits, they of-
ten inadvertently modify areas outside the RoI, as observed
in cases (b) and (c). Notably, our method helps focus the
baseline models on the RoI, as seen in (b) and (c), where
baselines struggle to preserve the original image. Although
our method is dependent on the baseline and may occasion-
ally induce unintended changes in peripheral areas, e.g., the
floor’s color, it consistently outperforms the baseline models
in terms of targeted and localized editing.

B. Implementation Details

We obtain the results using an NVIDIA A100 40GB GPU
machine. For 512 ↓ 512 images the IP2P-based baselines
(e.g., IP2P, IP2P w/MB, HIVE, and HIVE w/MB) take ap-
proximately 15 seconds per edit, while for LIME integrated
models, it takes ↘25 seconds.

B.1. User Study Setting

We carry out a study with 54 questions involving users,
asking 53 anonymous individuals on the crowd-sourcing
platform Prolific [38]. In our user study, participants will
be presented with two alternative edited images alongside
their corresponding input images and editing instructions.
They will be tasked with evaluating the effectiveness of
the edits in achieving the specified outcome and the ability
of the editing method to preserve the details in areas not
targeted by the instruction. Using the example provided
in Fig. 18, where the editing instruction is to Change to
a rosé, participants must discern which edited image (a,
b or neither) not only best satisfies this directive but also
maintains the fidelity of the scene’s irrelevant aspects. The
aggregated data from participant responses will yield insights
into the preferred methods for both accurate editing and
detail preservation, thereby influencing the development of
advanced image editing methods.

Figure 18. User study setting. The example with the edit instruc-
tion with the corresponding input image and randomly ordered two
edited images from baseline and baseline + LIME.



B.2. Reproducibility Statement

We guarantee that all the results presented in the main
manuscript and the supplementary materials can be repro-
duced. We will make our code base containing examples and
hyperparameters public so that the results can be reproduced.

B.3. Baselines

Open-Edit [27]: This GAN-based approach uses a recon-
struction loss for pre-training and incorporates a consistency
loss during fine-tuning on specific images. Its unique feature
is the arithmetic manipulation of word embeddings within a
shared space of visual and textual features.
VQGAN-CLIP [10]: Enhancing the VQGAN [13] frame-
work with CLIP embeddings [39], this method fine-tunes
VQGAN using the similarity of CLIP embeddings between
the generated image and the target text, leading to optimized
image generation.
SDEdit [29]: Leveraging the capabilities of Stable Diffu-
sion [41], SDEdit introduces a tuning-free approach. It uses
stochastic differential equation noise, adding it to the source
image and subsequently denoising to approximate the target
image, all based on the target caption.
Text2LIVE [4]: It propose a Vision Transformer [12] for
generating edited objects on an additional layer. It incor-
porates data augmentation and CLIP [39] supervision, ulti-
mately alpha-blending the edited layer with the original to
create the target image.
Null Text Inversion [33]: By optimizing the DDIM [45]
trajectory, this method initially inverts the source image.
After, it performs image editing during the denoising process
guided by cross-attention [18] between text and image.
SINE [55]: Real images are edited using model-based guid-
ance and patch-based fine-tuning process.
DreamBooth [42]: It fine-tunes a diffusion model by learn-
ing special text tokens and adjusting model parameters on a
set of images for editing.
Textual-Inversion [15]: It fine-tunes a token embedding
within the text-encoder space using a set of images.
Imagic [22]: It edits images through a three-step process:
first fine-tuning a token embedding, then fine-tuning the pa-
rameters of a text-guided image diffusion model using the
fine-tuned token embedding, and finally performing interpo-
lation to generate various edits based on a target prompt.
DiffEdit [9]: It identifies the region to edit in images by
contrasting between a conditional and unconditional diffu-
sion model based on query and reference texts. Then, it
reconstructs the edited image by collecting the features from
the text-query by combining the features in the noise/latent
space, considering the region to edit.
Blended Latent Diffusion [2]: This method uses a text-
to-image Latent Diffusion Model (LDM) to edit the user-
defined mask region. It extracts features for the mask region

from the edit text, and for the rest of the image, it uses
features from the original image in the noise/latent space.
DirectDiffusion [21]: It inverts the input image into the
latent space of Stable Diffusion [41] and then applies
Prompt2Prompt [18] to obtain the desired edit without mak-
ing any changes to the edit diffusion branch.
Diffusion Disentanglement [50]: It finds the linear combi-
nation of the text embeddings of the input caption and the
desired edit to be performed. Since it does not fine-tune
Stable Diffusion parameters, they claim that the method
performs disentangled edits.
InstructPix2Pix (IP2P) [7]: Starting from the foundation of
Stable Diffusion [41], the model is fine-tuned for instruction-
based editing tasks. It ensures that the edited image closely
follows the given instructions while maintaining the source
image without the need for test-time tuning.
InstructPix2Pix w/MagicBrush [53]: A version of IP2P [7]
trained on MagicBrush train set [53]. Since the MagicBrush
dataset has more localized edit examples, the fine-tuned
version has better results, as seen in Fig. 6a.
HIVE [54]: It extends IP2P [7] by fine-tuning it with an
expanded dataset. Further refinement is achieved through
fine-tuning with a reward model, which is developed based
on human-ranked data.
HIVE w/MagicBrush [53]: HIVE [54] fine-tuned on Mag-
icBrush train set [53]. Since the MagicBrush dataset has
more localized edit examples, the fine-tuned version has
better results, as seen in Fig. 6a.

C. Broader Impact & Ethical Considerations
The advancement in localized image editing technology

holds significant potential for enhancing creative expression
and accessibility in digital media and virtual reality applica-
tions. However, it also raises critical ethical concerns, par-
ticularly regarding its misuse for creating deceptive imagery
like deepfakes [24] and the potential impact on job markets
in the image editing sector. Ethical considerations must focus
on promoting responsible use, establishing clear guidelines
to prevent abuse, and ensuring fairness and transparency, es-
pecially in sensitive areas like news media. Addressing these
concerns is vital for maximizing the technology’s positive
impact while mitigating its risks.



Input Image IP2P [7] + LIME IP2P [7] w/MB [53] + LIME

(a) Turn the brown horse into a pink unicorn.

(b) Change the legs to be bionic.

(c) Change the color of the tulips to yellow.

Figure 19. More Qualitative Examples. We test our method on different tasks: (a) replacing an animal, (b) editing animal parts, and (c)
changing the color of multiple objects. The integration of LIME enhances the performance of all models, enabling localized edits while
maintaining the integrity of the remaining image areas.
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Chloé Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and
Ross B. Girshick. Segment anything. CoRR, abs/2304.02643,
2023. 5
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