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1. Additional Implementation Details of the
Retail Order Fulfilment Use-case

The detailed description of some of the modules of the
LLM-RSPF ontology corresponding to the retail order ful-
filment system discussed earlier are provided below:

• State: The <agent 1> state considered here is the
robot EOAT, i.e., <current eoat>. Since each picking
skill defined above uses a different EOAT, therefore,
the robot EOAT as a State is incorporated.

• Interfacing: It represents a commentarial communi-
cation within intra-Agent, inter-Agent or Agent-User.
Here, the commentaries include, intra-Agent com-
munication of object transfer messages between two
robots and Agent-User task-relevant conversations.

• Experience: For this domain-specific use-case (DSU),
only failure scenarios are considered to avoid Re-
Failure scenarios.

• Pick location: Bin1 contains heterogeneous set of ob-
jects and is intended for object from high mix low vol-
ume category. Bin2 contains homogeneous set of ob-
jects. Bin3 contains homogeneous set of objects, how-
ever, different from the one available in Bin2.

• Drop location: Drop1 (Conveyor) is a flat belt
conveyor to transfer objects from <robot 1>to
<robot 2>. Drop2 (Box) is a carton or a retail package
box to send objects for packaging or order fulfilment.
Drop3 (User) is a convenient fixed location intended
for the user retrieval.

• Arrangement: The <robot 1> and <robot 2> are at
the front and rear-end of the Conveyor, respectively.

Concerning the robotic manipulation skills of the Em-
bodiment, there are specific reasons behind the choice
of adopting domain-independent picking skill (DIPS) and

instance-retrieval picking skill (IRIS). These skills are in-
spired from a Good-to-Picker model in retail order fulfil-
ment. DIPS is advantageous when the system has to adapt
quickly to new objects without any deep learning-based
training. DIPS is useful for homogeneous items as these can
be changed entirely and the system can quickly adapt with
it. On the other hand, IRIS targets heterogeneous items,
which are intended for object classes from high mix low
volume category, a quite popular concept in order fulfilment
industry. It helps in achieving high space utilization.

• Mapping: Bin1 ⇌ <iris>; Bin2 ⇌ <dips>; Bin3
⇌ <dips>; <iris> ⇌ <suction>; <dips> ⇌
<2fgripper>.

• Classification:

– Valid: It results in a valid plan as all plan-relevant
information is available in the instruction.

– Invalid: It requests unreasonable tasks provided
the robotic system’s capabilities.

– General: It seeks irrelevant queries about the
robotic system.

– System information instruction (SII): SII seeks
system related information such as Workspace
details, Embodiment details, etc.

– Additional data request (ADR): ADR is related
to the robotic system and almost valid, however,
any one piece of information is missing.

2. Detailed Description of Dataset
To start with estimating the dataset unit size, the total

instruction classifications m is set as 5 according to the def-
initions from the Mapping module. The total robotic skills
S defined in the Action module are 3. As a result, the to-
tal combinations becomes 3 as there is a single <agent 1>.
In this work, considering 5 instructions as a sufficient span-
ning factor against each instruction classification, the do-
main rules infusion part comes out to be 40. Now, con-
cerning the few-shot tuning part, i.e., diversity inclusion,
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the ϵ′ is kept as 5. Thus, a unit size estimate comes out to
be 40 instructions. Following the dataset division ratio of
1:0.5:2, the training, validation, and testing size are 40, 20,
and 80, respectively. Theses 140 instructions are now cre-
ated using 14 human oracles. Each oracle is briefed about
the framework, its purpose, and different classifications in
advance. The pool of 140 instructions are reviewed through
an elementary quality check to ensure format consistency.
Subsequently, this instruction set is categorized into five ca-
pability tests that helps us to detect and understand any pos-
sible bias in the LLM: (a) Unitary action (UAT) (b) Task
complexity (TCT) (c) Contextual understanding (CUT) (d)
Diversity and consistency (DCT) (e) Sanity and robustness
(SRT). Such a way of human oracle-based annotation and
five-bucket division helps in opening the scope for having
sufficient diversity in the dataset, which also caters to the
diversity inclusion part. Finally, this high-quality human-
annotated instruction set becomes ready for Prompt-tuning.

3. Additional Information on Prompting

Initially, the CoHT fundamentally exercises few-shot
prompting. Any DSU is interpreted and transformed into an
elementary prompt. Next, the standard prompting style of
using placeholders, contextual separations using symbolic
cues, usage of tone or style, context priming, etc., is used to
structure and bring clarity to the prompting. This also helps
in setting optimal positioning of the textual domain rules.
Moving forward, the next portion of the prompting is defin-
ing few-shot examples. It is observed that in DSUs, the
LLM’s complex reasoning abilities are significantly gov-
erned by the domain examples as compared to abstractly
representing the domain rules in the form of contextually
separated paragraphs. As a consequence, it becomes in-
evitable to carefully craft the few-shots with sufficient di-
versity for the LLM to gain contextual understanding in ap-
propriate plan generation. One of the key advantage of the
CoHT is the scope of attesting hard-bound rules with each
hierarchical thought within a linear reasoning step, which
significantly helps in improving LLM’s reasoning for any
specific event that otherwise is quite difficult to achieve.

Although increasing the few-shot examples improves the
LLM’s performance, however, it is observed that by keeping
a single highly complex example in place of multiple simple
examples improves the LLM’s performance substantially.
This serves the other purpose as well to reduce the token
length by replacing multiple examples with a single one.
The aforementioned observation can be confirmed through
the Fig. 1. Here, simple, moderate, and complex denote the
task plan complexity.

Figure 1. Performance of CoHT-Regimen on varying shots and
token length

Figure 2. Primary robot for the scalability study

Figure 3. Secondary robot for the scalability study

4. Additional Information on Scalability of the
LLM-RSPF

At first, an illustration of both the robots used in the
scalability study are shown in Fig. 2 and Fig. 3, respec-
tively. Next, concerning the extended dataset, the num-
ber of instruction classifications remains the same. The
robotic skills are now increased to 5, i.e., initial 3 skills (re-



fer Section 3) mapped to primary robot, whereas, the other
2 mapped to the secondary robot. These 2 skills include,
an altered version of DIPS for secondary robot and a cus-
tom manipulation skill for opening and closing the drawer.
Note, the pick location is conveyor for the secondary robot,
whereas drop location is a drawer. The agent count here in-
creases to 2. Considering the ϵ′ as 5, and 5 instructions per
class, the dataset unit size becomes 50 as per formula (5)
given in Section 3. Subsequently, the training, validation,
and testing dataset size becomes 50, 25, 100, respectively.
Note, with the inclusion of tactile perception sensing ca-
pability in addition to visual scene information, there is an
addition into the dataset input. The tactile quality of each
object is also provided as an input along with the detected
objects from the workspace. The usage of tactile perception
helps in slip detection and slip prevention of objects, while
grasping and transferring them to drawer.
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