
Towards Secure and Usable 3D Assets: A Novel Framework for Automatic
Visible Watermarking

Gursimran Singh, Tianxi Hu∗, Mohammad Akbari∗, Qiang Tang, Yong Zhang
Huawei Technologies Canada Co. Ltd.

{gursimran.singh1, cindy.hu1, mohammad.akbari, qiang.tang, yong.zhang3}@huawei.com

A. Supplementary Materials
In this appendix, we present the supplementary materials

for the paper titled ”Towards Secure and Usable 3D Assets:
A Novel Framework for Automatic Visible Watermarking”.

A.1. Code and Demo

In order for the results to be reproducible, we share our
test code with detailed instructions in the supplementary
materials. We also uploaded a video file demonstrating
qualitative examples of watermarked 3D objects from vari-
ous viewing angles. Code and demo are available here1.

A.2. Datasets Statistics

As stated in Sec. 5, we sample a subset of 50 models
from two benchmark 3D datasets, namely, Manifold40 and
ObjaVerse. Particularly, we used random sampling strati-
fied by output classes from the train set of the respective
datasets. Additionally, for the Meshy GenAI dataset, we
downloaded 20 textured models generated using the Meshy
text-to-3D AI service. The statistics of the vertices and
faces of these datasets are presented in Tab. 1.

Dataset Vertices Faces
Name #Samples Min. Max. Mean Min. Max. Mean

Manifold40 50 6561 137055 56943.2 13134 160004 101312.9
ObjaVerse 50 64933 1122245 234601.5 130088 182460 159874.9

Meshy 20 9058 37273 20981.5 18086 74512 41924.8

Table 1. Dataset Statistics.

A.3. User Study

In order to subjectively analyze the performance of our
method compared to the baseline, we conducted a user
study involving 10 volunteer participants. Each participant
was randomly presented with either a textured or untextured
3D object from the GenAI Meshy dataset, watermarked us-
ing our method or the baseline. Participants were then asked

*Equal contribution.
1https : / / developer . huaweicloud . com / develop /

aigallery/notebook/detail?id=15adbaaa-2583-4ec3-
804a-61c29f001e03

to answer the following six ”yes/no” questions assessing the
watermark quality and utility of the displayed 3D object:

• Are the watermarks visible from different views?

• Are the watermarks’ placement and orientation good?

• Are the watermark texts readable?

• Is the asset’s geometry/shape preserved?

• Is the asset’s semantics preserved?

• Are the asset’s salient areas protected?

In total, 373 data samples were collected, where a value
of 1 and 0 were respectively assigned to the ”yes” and ”no”
answers. The averaged numerical results across all sam-
ples are summarized in Tab. 2. As shown in the table, the
users gave significantly higher scores to our method for both
textured and untextured objects in terms of the visibility of
the watermarks from multiple views (Visibility), placement
and orientation (Placement), and textual readability (Read-
ability) of the watermarks. Specifically, across textured and
untextured cases, the baseline scored approximately 46%,
68%, and 64% lower than our method for placement, read-
ability, and visibility, respectively.

On the other hand, for asset utility, users rated our and
the baseline method similarly in terms of preserving the
overall semantics and context (Semantics) of the asset af-
ter watermarking. However, our method demonstrated su-
perior performance compared to the baseline in preserving
the geometry (Geometry) and salient features (Saliency) of
the asset, achieving approximately 37% and 0.26% higher
scores, respectively.

Overall, users generally rated our method slightly higher
for watermark quality on untextured objects compared to
our method on textured ones. This discrepancy is often due
to texture (i.e., color information), which can significantly
influence the visibility and readability of watermarks, par-
ticularly when the watermark color closely matches the as-
set’s texture. We addressed this issue as a limitation of our
method in Appendix A.14, highlighting its importance for
future improvements.

1

https://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=15adbaaa-2583-4ec3-804a-61c29f001e03
https://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=15adbaaa-2583-4ec3-804a-61c29f001e03
https://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=15adbaaa-2583-4ec3-804a-61c29f001e03
https://developer.huaweicloud.com/develop/aigallery/notebook/detail?id=15adbaaa-2583-4ec3-804a-61c29f001e03


Dataset Method
Watermark Quality Asset Utility

Visibility ↑ Placement ↑ Readability ↑ Geometry ↑ Semantics ↑ Saliency ↑

Untextured
Li et al. 0.387 0.066 0.208 0.660 1.0 0.566
Ours 0.959 0.793 0.963 1.0 1.0 0.793

Textured
Li et al. 0.462 0.076 0.295 0.591 0.984 0.515
Ours 0.818 0.709 0.822 0.984 1.0 0.814

Table 2. User study results over GenAI Meshy dataset watermarked with our method and the baseline.

Figure 1. Average runtime (x-axis) required for watermarking
models having an average number of vertices (y-axis) for Mani-
fold40 (left) and ObjaVerse (right) datasets, respectively.

A.4. Runtime Analysis

In this section, we provide a runtime analysis of our
method. We count all the time required for end-to-end wa-
termarking of an asset, including any preprocessing time,
candidate generation, optimization, filtering, and emboss-
ing time. The plots for the average runtime (in seconds) cor-
responding to the average number of vertices are reported
in Fig. 1 for the Manifold40 and ObjaVerse datasets, re-
spectively. Based on empirical analysis, the overall run-
time grows linearly with the number of vertices of the tar-
get model. As seen in the plots, a model of 60K vertices
requires ≈ 30s, and a model of 1.2M vertices requires ≈
180s for watermarking.

A.5. Watermark Quality vs. Asset Utility Trade-off

In Sec. 5.1, we studied the trade-off between the wa-
termark quality and asset utility by performing experiments
with different numbers of watermarks Hf = {4, 16, 32}.
Two trade-off curves including Semantic vs. and Place-
ment, and SMSE vs. OCR were illustrated.

In this section, four more trade-off curves in terms of
SMSE vs. Placement, Semantic vs. OCR, IPE vs. OCR,
and IPE vs. Placement are shown in Fig. 2. Similar to the
trade-off curves provided in the main body of the paper, in-
creasing the number of watermarks results in higher water-
mark quality, but lower asset utility. However, our method
achieves significantly improved trade-off results compared
to the baseline ones. For example, our method can achieve
an OCR score of ≈ 0.85, while providing an IPE error of
18.0. On the other hand, the baseline can achieve a much
lower OCR score of 0.30 with a higher IPE error of 20.

Additionally, as shown in Fig. 2, the effect of the number

Figure 2. More trade-off results between the watermark quality
and asset quality metrics on Manifold40. Hf : number of water-
marks.

of watermarks on the placement score vs. the geometry-
based SMSE error is very minor. In other words, regardless
of the number of watermarks, our method can effectively
find the optimal locations and orientations to emboss the
watermark without damaging the overall geometry of the
original asset.

A.6. Implementation Details

In this section, we provide more implementation details
of our work. As stated in Sec. 3, the task of 3D visible
watermarking has three inputs, namely 1) target model, 2)
watermark text, and 3) algorithm parameters such as water-
mark text font, thickness, and size. We fix the input param-
eters for all our experiments unless stated otherwise. For
input (1), since our method does not depend on texture in-
formation, we remove texture information from input mod-
els and convert them into standard OBJ file format [4].

However, our method supports watermarking textured
objects, which is done by simply replacing the untextured
original model with the textured one during the emboss-
ing step. We have provided some qualitative results of wa-
termarking textured models in Fig. 10. Other than that,
to avoid any variability in metrics computation, we stick
to untextured models that are scaled to a fixed size of 30
and centered at origin (0, 0, 0). Additionally, to preserve



Algorithm 1 Candidate Box Generation

Inputs: Target coordinates P i
C , target normal P i

N , watermark string Zm, watermark size Zs, watermark font Zf

1: V ws
i , Fws

i ← text to 3d(Zm, Zs, Zf )
2: V bs

i , F bs
i ← oriented bounding box(V ws

i , Fws
i )

3: αi, βi, γi ← compute angles([0, 0, 1], PN
i )

4: Ri ← generate rotation matrix(αi, βi, γi)
5: Ti ← generate translation matrix(PC

i )
6: Vi ← Ti ·Ri · V bs

i

7: Output: Vi

computational resources, we decimate the models to keep
the number of vertices below 80, 000 for generating water-
mark boxes by our algorithm. However, during the water-
mark embossing step, we still use the original undecimated
model. Further, we always use “watermark” as the water-
mark text (input 2) for all our experiments and use the de-
fault text font as provided by the off-the-shelf library [7] for
converting text to 3D mesh. We use the thickness (distance
between the front and back faces of the watermark) of 0.5
and a fixed watermark size (scale of mesh) of 4 in all our ex-
periments unless stated otherwise. Finally, in the embossing
module, we use a fixed value of 0.05 as the extrude strength
in Algorithm 2.

We sample a fixed number of Hs = 300 points for gen-
erating the initial number of candidate boxes. From this
initial set, we obtain the final H by rejecting points that are
too close (radius Hr < 1). The number of final watermarks
after filtering Hf is variable for each model, whose aver-
age value is 9.97 for Manifold40 and 8.82 for ObjaVerse.
The value of J , which is the number of sampled points for
computing the alignment loss (Eq. 9) is fixed to be 179, in-
cluding the midpoints. For optimizing the objective in Eq.
8, we run a fixed number 200 of gradient descent steps and
use stopping criteria of mean loss less than 0.005.

We used a 12-CPU-core machine with two NVIDIA
GeForce GTX 1080 to run our experiments. All our
code was implemented in Python 3.10 and the optimiza-
tion objective including gradient back-propagation was im-
plemented using Pytorch 3D [9]. We use off-the-shelf 3D
libraries to implement many common mesh operations in
this work. Note that, our work can handle all 3D models
which can be converted to a mesh and which support 3D
Boolean operations. We can simply convert the given for-
mat into the mesh model to obtain watermark locations and
apply Boolean operations in the end to fuse watermarks into
the target format.

A.7. Initialization (more details)

In this section, we provide more specific details of the
Initialization module (Sec. 4.1). As mentioned earlier, we
sample H equidistant points on the surface of the target
model. Specifically, we start by randomly sampling Hs

points {(x, y, z)|x, y, z ∈ R}Hs
i=1 on the surface of the tar-

get model. Then, we reject the points that are closer to
each other than a radius of Hr. After this step, we de-
note the final set of points, that are approximately equidis-
tant, by {P i

C}Hi=1 and their corresponding surface normal
by {P i

N}Hi=1.
Then, for each of these sampled points, we use

the procedure in Algorithm 1 to generate the candidate
boxes. Specifically, we start (Lines 1-2) by generating
a watermark mesh W s

i (V
ws
i , Fws

i ) and its bounding box
Bs

i (V
bs
i , F bs

i ) using off-the-shelf algorithms text to 3d
and oriented bounding box. We configure these al-
gorithms to make sure that these meshes are generated at
origin (0, 0, 0) and the face of the 3D text faces towards
the +Z direction (0, 0, 1), also referred to as front direc-
tion. Then, we perform a rigid-body transformation opera-
tion (Lines 3-6) to transport the box at the ith sampled lo-
cation PC

i and align the box along its normal PN
i . Specif-

ically, we use the compute angles routine (Line 3) to
compute the angles between the front direction of the box
(0, 0, 1) and the target direction PN

i . We use these angles
αi, βi, γi to for the rotation Ri (Line 4) and the target loca-
tion PC

i to compute the translation matrix Ti (Line 5). Fi-
nally, we use these rotation and translation matrices for the
final transform (Line 6) to obtain the transformed vertices
Vi.

A.8. Finetuning (visualization)

In this section, we present visualizations before and after
optimization in the finetuning module (Sec. 4.2). As shown
in Fig. 3-left, the boxes placed using the initialization mod-
ule are misaligned with the surface of the dolphin’s body.
After optimization (Fig. 3-right), the boxes’ alignment is
corrected, and they are positioned accurately to follow the
curvature of the dolphin’s surface. Specifically, the opti-
mization involves three operations: tilting, rotating, or mov-
ing the boxes to achieve proper alignment. For instance, the
cyan box situated at the top fin of the dolphin cannot be
rotated or tilted and thus needs to be relocated to improve
its alignment. Conversely, many boxes on the body can be
adjusted by simply rotating or tilting them to correct their
alignment.



Figure 3. Effect of optimization on candidate boxes. The left figure shows misaligned candidate boxes placed using Algorithm 1 that are
fixed (right) by either moving, rotating, or tilting these boxes using the proposed rigid body optimization.

Figure 4. Step-by-Step Filtering Process: This illustration visualizes the progressive filtering of bounding boxes. From left to right, each
image displays the remaining boxes after applying a specific filter. The first image shows the result after the low roughness score filter. The
second image depicts the results after discarding boxes with low loss. The third image presents the outcome of filtering out overlapping
and occluded boxes. Finally, the fourth image displays the final set after applying a multi-octant and multi-angle visibility filter.

A.9. Filtering (more details)

In this section, we provide more details about the indi-
vidual filtering steps discussed in Sec. 4.3. Going from left
to right, Fig. 4 shows the results of various steps of filtering
operation. As seen, each filtering step prunes the undesir-
able boxes and keeps the most important boxes with an aim
of high watermark visibility and high asset utility.

Well Aligned Boxes with Low Loss: The loss defined
in Eq. 9 quantifies the alignment accuracy of the box with
the mesh surface. To reject sub-optimal boxes that are mis-
aligned, we apply straightforward thresholding on the indi-
vidual box loss. Through observation, we have determined
that a loss less than 0.005 typically indicates well-aligned
boxes.

Boxes with Low Local Roughness: We calculate the
local roughness beneath each candidate bounding box and
discard boxes exceeding a specific threshold. Here’s the

detailed procedure. First, we identify all vertices within
the i-th bounding box Bi. From these vertices, we ran-
domly sample Hr points and compute the average cross-
product of their normals. The local roughness score is de-
fined as the inverse of this average cross-product R(Bi) =
1

Hr
2

∑Hr

j=1

∑Hr

k=1
1

cos(Ni
j ,N

i
k)

where (N i
j , N

i
k) are the nor-

mals of points inside box Bi. Through analysis, we have
determined that a roughness score less than 1.25 typically
indicates boxes located on flatter surfaces.

Non-Overlapping Boxes: To handle potential overlaps
among candidate boxes, we employ a greedy approach. Ini-
tially, we randomly select a box and iteratively discard any
box that overlaps with those already chosen. Overlap is de-
termined by checking for intersections among the vertices
of the original mesh contained within pairs of bounding
boxes.

Non-Occluding Boxes: To mitigate potential occlusions
of some boxes by parts of the target model, such as under



Algorithm 2 Curve Matching Fusion

Inputs: original mesh M , watermark meshes {W i
f}

Hf

i=1, extrude strength Hy

1: for Wi ∈ {Wi}
Hf

i=1 do
2: W i ← boolean intersection(M,Wi)
3: NE

i ← closest normal(Wi)
4: W̃i ← perform extrusion(W i, N

W
i , Hy)

5: end for
6: M ′ ← boolean union(M, {W̃i}

Hf

i=1)
7: Output: M ′

the arms or between the thighs in humanoid models, leading
to diminished watermark visibility, we utilize a ray casting
method. This approach helps identify and subsequently re-
move watermarks that are occluded. We sample equidistant
points from the front face of each bounding box and cast
rays along the normal direction of the watermark. If any
of these cast rays intersect with parts of the target model,
the watermark is classified as occluded and is subsequently
removed.

Multi-Octant Presence: To deter model theft, water-
marks should be distributed across diverse locations of the
model. We achieve this by dividing the model into 8 octants
using planes along the X , Y , and Z axes passing through
the model’s centroid. Each octant is assigned a watermark.
If multiple watermark options exist per octant, we select the
one furthest from the watermarks in adjacent octants.

Multi-Angle Visibility: In this step, we add extra boxes
to ensure the watermark is visible from multiple viewing
angles. This prevents attackers from using 2D renders of a
3D object where the watermark might not be visible due to
camera angles. Our goal is to position at least one water-
mark on the visible portion of the model’s surface for each
viewing angle. To achieve this, we iterate through fixed an-
gle increments of 30° around the X and Z axes and add
a watermark if no other existing watermarks are found for
that angle.

A.10. Watermark Embossing

In this section, we provide more details of the novel
curve-matching fusion presented in Sec. 4.4. We start
by generating 3D-text watermark meshes {Wi}

Hf

i=1 using a
standard text-to-3D algorithm [7], positioned and oriented
according to selected bounding boxes {Bi

f}
Hf

i=1. Then,
given the target mesh M and the generated 3D watermarks
{Wi}

Hf

i=1, we use Algorithm 2 to obtain the watermarked
mesh M ′. Specifically, first, we apply a boolean intersec-
tion operation (Line 2) between the original mesh M and
i-th watermark mesh Wi. Then, we find the extruding nor-
mal NE

i by computing the normal of the closest point on
the mesh (Line 3) from the centroid of watermark mesh Wi.
Next, we perform the extrusion operation (Line 4) of the

intersection W̄i silhouette to give an embossing effect. Fi-
nally, we simply take a Boolean union [6] of the extruded
watermark meshes {W̃i}

Hf

i=1 and the original mesh M to
obtain the final watermarked result M ′.

A.11. Evaluation Metrics

In this section, we provide additional details of the eval-
uation metrics discussed in Sec. 5.

A.11.1 Watermark Quality

Watermark Placement Score (WPS): WPS measures the
alignment between the watermarks and the mesh. The in-
puts consist of a mesh M and a bounding box Bi. We start
by computing vertices of the mesh M that lie inside the
bounding box Bi and denote them as V in. Then, we find
all faces that have at least one vertex in the set V in and de-
note them as F c. From these faces, we only consider faces
that lie completely inside the bounding box (all three ver-
tices in V in) and compute their areas. Then, we project
these areas in the direction of the front face of the box. Fi-
nally, we sum up the areas and divide the sum by the area of
the front face of the box to compute the watermark place-
ment score. For multiple bounding boxes, we simply report
the mean score computed across multiple Bis. Note that,
we used this approximate procedure to compute area for ef-
ficiency purposes as the standard methods do not scale well
to a large number of vertices.

Ray Casting Visibility (Ray): Ray measures the visi-
bility of watermarks from all views of the model. We begin
by generating views of the watermarked mesh M ′ by rotat-
ing the camera around the X and Z axes in 30° increments.
For each view ctw, we identify candidate watermark meshes
oriented within 45 degrees of the camera’s direction. Using
ray casting, multiple random rays are projected from the top
face of each candidate’s bounding box towards the camera.
A per-watermark score of 1 is assigned if all rays reach the
camera without obstruction; otherwise, it is 0. The per-view
score is computed by averaging across all per-watermark
scores in that view. Finally, the final ray score is obtained
by averaging overall per-view scores.



OCR Visibility (OCR): OCR measures the readability
of watermarks from all views of the model. We begin by
generating renders of the watermarked mesh M ′ for each
view ctw, obtained by rotating the camera around the X
and Z axes in increments of 30°. Next, we utilize an off-
the-shelf OCR detector [2] to identify candidate 2D boxes
that potentially contain readable text. Subsequently, to ac-
count for text orientations that are not left-to-right aligned,
we augment the candidate boxes by adding rotations of 90°,
180°, and 270°. Then, we use an off-the-shelf OCR recog-
nizer [2] to generate candidate text recognitions. These can-
didates are then scored using a popular sequence matcher
[1] to quantify their similarity to the ground truth water-
mark text. Finally, for each view ctw, we take the maximum
score and average these scores across all views to obtain the
final OCR score.

A.11.2 Asset Utility

Sampled Mean Squared Error (SMSE): SMSE aims to
compute the Mean Squared Error (MSE) between the wa-
termarked mesh and the original mesh. Since the number
of vertices and faces changes after watermarking, it is not
possible to compute the MSE directly. Instead, we start by
randomly sampling a large number of points on the surface
of the watermarked mesh M ′. Then, we compute the dis-
tances of these sampled points from the original mesh M
using a standard routine in the Trimesh package [3]. Fi-
nally, we report the inverse of the mean distance values as
the final SMSE score.

Isolated Parts Error (IPE): IPE is a measurement of the
change in mesh topology before and after watermarking. It
is computed as the difference in the total number of isolated
parts between the watermarked mesh M ′ and the original
mesh M . The motivation is based on the intuition that the
number of isolated parts in a model should remain identical
after watermarking. An increased IPE captures the cases
when a part of the watermark text is disconnected from the
model surface. Such isolated parts degrade the asset utility
and can be easily removed to damage the watermark mes-
sage. Lower IPE indicates less change in the mesh topology
and therefore better watermark placement.

Local Curvature Error (LCE): LCE measures how
well the surface curvature of watermarked areas is pre-
served (as discussed in Sec. 4.4 and Appendix A.10). For
each vertex on the top face of a watermark, the distance to
its nearest neighbor on the original mesh surface M is com-
puted. This process is repeated for every vertex and wa-
termark, and the LCE is calculated as the variance of these
distances. A lower LCE indicates that the watermark con-
forms to the surface curvature, while a higher LCE indicates
deviation from the underlying surface curves.

Saliency Error (SE): SE is designed to assess if any

of the watermark placed covers the salient features of the
original mesh. It is computed by first calculating a nor-
malized continuous saliency map of the mesh M using an
off-the-shelf implementation in [8]. Then, we threshold the
saliency map using Otsu’s method [10] to have binary per-
vertex salient/non-salient scores. Next, for each watermark
bounding box Bi, we compute a binary saliency vote for
each bounding box indicating if it is placed on a highly
salient area. Specifically, we assign a value of 1 if the aver-
age of thresholded saliency values within the box is greater
than 0.5, and a value of 0 otherwise. The average value
of saliency votes overall bounding boxes is reported as the
saliency score.

Semantics Score (SS): SS is used to measure how well
a model’s semantics is preserved through measuring the
change in visual features after watermarking. To compute
it, we start by generating renders of the target M and wa-
termarked mesh M ′ by rotating the camera around the X
and Z axes in 30° increments. Then, for each pair of cor-
responding 2D renders, we compute the cosine similarity
between their feature vectors extracted using a pretrained
ResNet50 [5]. Finally, we average these per-view cosine
similarity scores over all views {(ctw, cto)}Tt=1 (taken at 30°
increments around the X and Z axes) to obtain the final
score.

A.12. More Attacks Analysis

In Sec. 5.4, we presented a preliminary analysis of at-
tacks and robustness. Specifically, we demonstrated the su-
periority of our method compared to the Li et al. (visible)
and Wang et al. (invisible) baselines against three attacks:
cropping, unauthorized removal (see Tab. 3 in the main
body of the paper), and remeshing attacks (see Fig. 5 in
the main body of the paper). In the following section, we
extend this analysis and provide additional results.

We begin by analyzing the effects of unauthorized re-
moval attacks on our approach and the Li et al. baseline, as
detailed in Sec. 5.4. The qualitative results of this attack
are presented in Fig. 7. In this attack scenario, we assume
a sophisticated adversary who can identify all vertices and
faces of the watermarks and remove them using mesh edit-
ing software. This task can be quite challenging unless the
watermarks are colored with a distinct color. As shown in
the figure, even when the attacker knows the vertices and
faces, watermarks remain clearly visible in our method due
to the silhouette created by the holes. However, for the base-
line method, since the watermarks may not fully touch the
model surface due to poor orientation, the resulting silhou-
ettes are partial, making the watermarks unreadable.

Next, we conducted tests on typical mesh editing oper-
ations such as decimation and simplification using visible
watermarks (ours) and invisible watermarks (Wang et al.).
We applied a decimation strength of 0.9 and a subdivision



Figure 5. Impact of mesh editing attacks. From left to right, the first figure shows the original object with no attacks. The second shows
the effect of a severe decimation attack (strength = 0.9) and the third shows the effect of a subdivision attack (strength = 2). As seen the
watermarks are slightly affected by the decimation attack but they are still visible. On the other hand, the watermarks are unaffected by
subdivision attacks.

Figure 6. Impact of geometric attacks. From left to right, the first figure shows the effect of translation to a random position. The second
shows the effect of rotation by a random angle and the third shows the effect of scaling the object. As shown, the watermarks move
synchronously and are not affected by these inadvertent transformations.

strength of 2. These values were chosen to be sufficiently
high while ensuring that the visual integrity of the asset re-
mains intact to a normal eye. The results are presented in
Fig. 5. In both attacks, the invisible watermark could not
be successfully extracted (with less than 50% bit accuracy),
whereas our method preserved the watermark well enough
for the message to be clearly readable from multiple angles.
Specifically, the clarity of watermarks degraded slightly un-
der the decimation attack but remained completely unaf-
fected by the subdivision attack. We observed that increas-
ing the strength of the decimation attacks could completely

erode the watermark, but at that point, the utility of the asset
was also significantly degraded.

Lastly, we present qualitative results demonstrating in-
advertent geometric operations performed in mesh edit-
ing software in Fig. 6. For these operations, such as ro-
tation, scaling, and translation, the watermarks are also
transformed synchronously, hence the watermark quality re-
mains unaffected.



Figure 7. Impact of Unauthorized Removal Attack: This figure demonstrates the effect of an unauthorized removal attack, where an attacker
attempts to eliminate watermarks by deleting all faces and vertices associated with the watermark mesh. The left side shows the attack
applied to Li et al.’s baseline method, where the complete watermark message cannot be read. Conversely, the right side showcases the
attack on our proposed method, where we can still easily identify the watermark message, demonstrating its superior resilience compared
to the baseline.

A.13. More Qualitative Results

Fig. 8 and Fig. 9 show some visual examples of the mod-
els (from Manifold40 and ObjaVerse) watermarked with
our method and the baseline. As shown, compared to the
baseline, our method generates watermarks with signifi-
cantly better placement, orientation, readability, and visi-
bility from multiple views. On the other hand, the baseline
produces watermarks that either fly out or are hidden under
the surface.

Please note that we colored (i.e., adding texture) all the
watermarks in Red in all the qualitative results for better
observability for the reader. However, as also shown in
Fig. 10, the untextured watermarks still provide high visi-
bility for the IP protection of the objects.

Moreover, three textured models (from the collected
GenAI Meshy dataset) watermarked with our method and
the baseline are illustrated in Fig. 10. Similar to the vi-
sual examples related to human-made datasets in Fig. 8
and Fig. 9, our method generates watermarks with signif-
icantly better placement, orientation, readability, and visi-
bility from multiple views compared to the baseline.

It should be noted that our method has been optimized to
preserve the most salient features of the mesh without con-

sidering the texture information. As a result, for the textured
models, it is possible that our method places a watermark on
the areas that are visually seen as highly salient due to the
presence of the texture (i.e., color information). For exam-
ple, in the textured shark model in Fig. 10, a watermark is
placed near the eyes and nose of the shark. However, as
also illustrated in the untextured version of the object, such
details are not present in the mesh, and the selected area to
emboss the watermark is smooth without any salient fea-
tures.

A.14. Limitations and Future Work

Automated visible watermarking offers a practical
framework for several critical scenarios, such as GenAI
misuse, merchandise protection, and copyright violation.
However, being the first work in this direction, it has sev-
eral limitations that present significant opportunities for fu-
ture research.

One significant concern revolves around how well our
proposed benchmarks for watermark quality and asset util-
ity align with human perception. The impact of visible wa-
termarks on the perceived asset utility can vary significantly
depending on the specific downstream application. Addi-



tionally, factors like viewing angle, texture, lighting condi-
tions, and background complexity can influence how wa-
termark quality is perceived in different contexts. This vari-
ability and subjectivity complicate the usability and reliabil-
ity of our proposed metrics across all scenarios universally.
Addressing these challenges represents an intriguing direc-
tion for future research.

Additionally, the robustness of visible watermarks
against more intentional attacks poses a significant chal-
lenge in certain scenarios. A determined adversary may
employ skilled 3D artists to manually remove watermarks
and illegitimately sell or use the unwatermarked asset, vi-
olating the copyright of the owner. Although such effort
will come at a significant cost, due consideration needs to
be given to this possibility while employing this technology
for practical purposes. Further, it would be an interesting
direction for future work to explore and evaluate more so-
phisticated and automated attacks against our solution and
propose a better and a resilient solution.

Further, our proposed solution works in four indepen-
dent steps that are not end-to-end optimized for the most
efficient performance. Specifically, we believe better per-
formance can be significantly improved by combining the
bounding-box fine-tuning and the filtering steps into one
single optimization objective. However, this optimization
can be challenging due to the various discrete operations in
the gradient back-propagation process. We leave it to future
work to solve these challenges and propose an improved so-
lution that can further the state-of-the-art in this promising
direction.

Finally, beyond technical considerations, visible 3D wa-
termarking raises practical concerns regarding artistic in-
tegrity, where a fine balance needs to be maintained be-
tween content protection and user acceptance. Additionally,
incorporating 3D visible watermarking in real-time or in-
teractive applications imposes computational overhead that
may impact performance and user experience. Addressing
these multifaceted and practical challenges is essential for
unlocking the full potential of visible 3D watermarking.



Figure 8. Two visual examples from Manifold40 showing 3D models watermarked with our method (left) and Li et al. baseline right). Ours
provides better placement quality, readability, and viewability. We colored the watermarks in Red for better observability for the reader.



Figure 9. Two visual examples from ObjaVerse showing 3D models watermarked with our method (left) and Li et al. baseline (right). Ours
provides better placement quality, readability, and viewability. We colored the watermarks in Red for better observability for the reader.



Figure 10. Two visual examples from GenAI Meshy showing textured 3D models watermarked with our method (left) and Li et al. baseline
(right). Ours provides better placement quality, readability, and viewability.



References
[1] Virginia Brancato, Joaquim Miguel Oliveira, Vitor Manuel

Correlo, Rui Luis Reis, and Subhas C. Kundu. Could 3D
models of cancer enhance drug screening? Biomaterials,
232:119744, Feb. 2020.

[2] Keras OCR contributers. A packaged and flexible version of
the craft text detector and keras crnn recognition model.

[3] Dawson-Haggerty et al. trimesh. python library for loading
and using triangular meshes.

[4] Planning for Library of Congress Collections. Wavefront obj
file format.

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition, Dec. 2015.
arXiv:1512.03385 [cs].

[6] An-Bo Li, Hao Chen, and Xian-Li Xie. Visible watermark-
ing for 3D models based on 3D Boolean operation. Egyptian
Informatics Journal, 25:100436, Mar. 2024.

[7] Harishankar Narayanan. codetiger/Font23D, July 2024.
original-date: 2015-04-24T08:53:52Z.

[8] Stavros Nousias, Gerasimos Arvanitis, Aris S. Lalos, and K.
Moustakas. Mesh Saliency Detection Using Convolutional
Neural Networks. IEEE International Conference on Multi-
media and Expo, 2020.

[9] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor
Gordon, Wan-Yen Lo, Justin Johnson, and Georgia Gkioxari.
Accelerating 3D Deep Learning with PyTorch3D, July 2020.
arXiv:2007.08501 [cs].

[10] Xiangyang Xu, Shengzhou Xu, Lianghai Jin, and Enmin
Song. Characteristic analysis of Otsu threshold and its ap-
plications. Pattern Recognition Letters, 32:956–961, May
2011.


	. Supplementary Materials
	. Code and Demo
	. Datasets Statistics
	. User Study
	. Runtime Analysis
	. Watermark Quality vs. Asset Utility Trade-off
	. Implementation Details
	. Initialization (more details)
	. Finetuning (visualization)
	. Filtering (more details)
	. Watermark Embossing
	. Evaluation Metrics
	Watermark Quality
	Asset Utility

	. More Attacks Analysis
	. More Qualitative Results
	. Limitations and Future Work


