Supplementary Material
CharDiff: Improving Sampling Convergence via Characteristic Function
Consistency in Diffusion Models

1. Proof of Eq. 1

Remark 1 ([2]) On a compact domain of Diameter D,
2-Wasserstein distance between two densities p and q is
bounded by total variation norm,

Wa(p.q) = D / ip(e) — q(a)|dx M)

From remark, we can further write it for ChF as,
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Lets assume 7' be an optimal transport map such that Typ =
pe. Using change of variables, we have,

po(T'(x))det(VT (x)) = p(x) 4)

Vi log po(T(x)) =V log p(x) + (Vi log po(T'(x))
- Vx IOg p(X))

We can further rewrite the equation 3,
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Using Taylor’s expansion, we have,

Vi log p(T'(x)) = Vi log p(x) + V3 log p(x)(T'(x) — x)
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where ), is the smallest eigenvalue of Fisher information.
Finally, we write Eq. 6 as,
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At last, we use 2 in 8 to get,

1
\/ / s, 1) = 0, D Epx)x = max O o)
©)

2. Proof of Proposition 1

From [4], the PDE for ¢(u) is given by,
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where the underlying diffusion process is given by, dx =
a(x)dt + b(x)dB(t) with dB(t) being a Brownian motion.
For Score-SDE, we have a(x) = 0 and b(x) = ¢(¢)I with
¢(t) as a function of time.

The Eq. 10 becomes,
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3. Proof of Proposition 2

We start with applying Taylor series expansion and ignor-
ing higher order terms of u.
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For forward and reverse distributions as time ¢, Q; = Pp_;.

Assuming that z; and x} are sampled from nearly identi-
cal distribution, the bound over the distance can be found
by using Chernoff inequality. Substituing this inequality
completes the proof.

4. Proof of Theorem 1

We first show that,

W3 (p,q) < Eu[ll¢p(u) — ¢g(u)|?] (13)

Proof 2 From []],
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Since the samples are drawn from a normal distribu-

tion, it can be assumed that for some 0, f |m|dm =~
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Wi (p,q) < Eu[|¢p(u) — ¢o(u)]  (15)

From [3], it is known that,

FID(p,q)
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where T is the Inception Network, and L is the Lipschitz

constant for I. Substituting 16 in 15 complets the proof.

5. Proof of Theorem 2
Proof 3
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Now, C' can be thought of as discretization error due to finite
sampling in the following way,
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It is to be noted that e?? = cos(p) + isin(p). Substituting

C and Vy, (vVa;u), and taking Vi, £ = Real(Vx, L) +
Im(Vy, L), We get,
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Taking Expectation over u, we get,
V. Eal£] = A+ B(I -V, logpy), 1)
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