DisFlowEm : One-Shot Emotional Talking Head Generation using
Disentangled Pose and Expression Flow : Technical Appendix

1. Experimental Details
1.1. Network Architecture Details
1.1.1 Expression Generation Network:

The expression generation network G, consists of an Au-
dio Encoder E,, Emotion Encoder E., Mouth Graph En-
coder E, 4, Face Graph Encoder E 4, and Face Graph De-
coder D¢y. Audio Encoder E, uses an input emotion-
invariant DeepSpeech [3] features of size R*2° corre-
sponding to each video frame. E, consists of 3 LSTM lay-
ers which with hidden size 256. The output of E, consists
of an audio feature vector of length 128. Emotion Encoder,
E. consisting of a single convolutional layer, encodes an in-
put emotion (one-hot vector consisting of six emotion labels
and two different intensities) to an emotion feature vector
of length 128. Face Graph Encoder, Ey, encodes the input
canonical frontal face landmark graph G = (V, £, A) using
spectral graph convolution [5] to a face graph feature vec-
tor of length 128 using hierarchical graph convolution [9].
A Face Graph Decoder Dy, reconstructs the output land-
mark graph G’ = (V', &, A) from the concatenation of the
feature vectors f,, fi, fo by performing graph upsampling.
In contrast to [9] our proposed method uses a Mouth Graph
Encoder E,,, which performs graph convolution of mouth
landmark graphs G¥ = (V™, £™, A™) consisting of mouth
landmark vertices for improving lip sync accuracy with the
help of a landmark lip sync loss Lgyn. (Eq. 3 in main pa-

per).

1.1.2 Pose Generation Network:

The proposed Pose Generation Network as shown in Fig. 3
of the main paper, consists of an Audio Encoder E,, Emo-
tion Encoder E,, and Pose Encoder E),. The Audio Encoder
E, uses an LSTM network of 3 layers (hidden size 256) to
encodes DeepSpeech features to an audio feature vector of
length 128. The Emotion Encoder E. encodes the input
one-hot emotion vector to a fixed feature vector of length
128. The Pose encoder also encodes the reference pose and
the input ground truth pose (during training) independantly.
These input features are concatenated and passed to a bidi-
rectional LSTM network consisting of 2 hidden layers of

size 256. The decoder is another bidirectional LSTM of (2
hidden layers of size 256) which decodes the noise variable
Z (sampled from N(y,0) during training) conditioned on the
input emotion, audio and pose reference features. The out-
put feature produced by the decoder LSTM (size 256) is
passed through a linear FC layer to get a predicted pose dis-
placement vector of dimension 6.

1.1.3 Image Generation Network

Input identity image I;4 of size 256x256x3 is first down-
sampled to 64x64x3. This image is warped using TPS trans-
formations for expression and pose respectively to genera-
tion I, and I, respectively. I, is concatenated along the
channel dimension with difference of gaussian heatmaps
(h.,) computed between expression landmarks and neutral
landmarks A, (Lezp) — hm (Lnew). This concatenated fea-
ture is used to generate dense optical flow and occlusion
map for expression branch, using an hourglass network as
shown in Fig. 4 of the main paper. Similarly I, is con-
catenated along the channel dimension with A, (Lpose) —
hm(Lnew), and sent to the pose branch of motion genera-
tion network to compute pose flow and occlusion map. Each
hourglass network consists of 5 downsampling blocks fol-
lowed by 5 upsampling blocks. The output of each hour-
glass network is followed by a convolutional layer that gen-
erates flow and occlusion maps of size 64x64x2 respec-
tively. In the Image reconstruction stage, the identity image
256x256x3 is encoded by an identity encoder consisting of
4 convolution+downsampling layers. The decoder upsam-
ples the bottleneck layer feature to an inpainting image of
resolution 256x256x3. To preserve the identity information
of the source image in the inpainted image, the downsam-
pled feature maps after each layer are warped using the oc-
clusion and flow map of the respective branch and then con-
catenated with the decoder feature map at the previous reso-
lution. The expression branch additionally uses an emotion
input concatenated with the lowest resolution feature map
before being sent to the decoder.



1.2. Single-stage optical flow-based Texture Gener-
ation (for Ablation)

Ablation configuration (1) Our method w/o disentan-
gled learning: In order to emphasize the importance of
two branch generation, we also train a model with a single
branch for computing optical flow based on expression and
pose landmarks. The Motion Generation Network learns
the emotion-conditioned facial motion with the help of a
dense optical flow map and occlusion map [4, 15]. The op-
tical flow map indicates the transformation of the source
image I;4 to generate the final output image. The occlusion
map indicates the regions that are occluded in the source
image which need to be inpainted in the generated image.

g (lig,tpse, ipsp, hm(Lexp)a h7n(Lpose)7 e) —
(flow, occ)

The flow map is generated as follows, flow = M x
tpse + (1 — M) *tps,, where M is a pixel contribution map
that is used to combine the TPS transformation function due
to expression and pose deformation parameters. The optical
flow map is used to warp the feature maps of I;; encoded
by the inpainting network. The final generated image is ob-
tained as follows :

Leoptpose = T(Lig, flow) * occ + Linpaint * (1 — occ)
where I;;,pqin¢ 18 the texture map containing inpainted tex-
ture of the face.

The single-flow based texture generation network is fine-
tuned on MEAD dataset to learn emotional talking face.
However due to the low pose variety of MEAD, the net-
work is unable to retain the head pose variety learnt during
pretraining on large scale emotion-agnostic datasets, due to
a single combined optical flow and occlusion map. While
the face moves the hair remains static, as visible in the abla-
tion section of the supplementary video, and Fig. 8 of main

paper.
1.3. Data-preprocessing:

The ground truth videos of training datasets HDTF [15],
MEAD [10] and RAVDESS [6] recorded at 30 fps are
cropped to 256x256 size frames. The identity image [;4
is in fixed frontal (or near frontal) pose which is aligned
to frontal face during evaluation. The ground-truth land-
marks are extracted using 3DDFA [2] and [!3] follow-
ing [8]. The ground truth poses are computed by com-
puting a rigid transformation from the neutral pose iden-
tity image landmark L,,.,,. The ground truth landmarks are
aligned via procrustes alignment [ 1] to canonical face land-
marks in a fixed frontal pose in order to train Geyyp, fol-
lowing [9]. DeepSpeech [3] features are computed from
the input audio corresponding to each video frame. During
fine-tuning of expressions branch of G,qgc on MEAD and
RAVDESS, due to the poor variability of these datasets we
perform background augmentation and random colour and
brightness manipulation to allow variability during training.

This helps in improved generalization to arbitrary faces and
backgrounds at test time.

1.4. Implementation Details and Training Strategy

The reference pose py used in Gpose 1S extracted from
the input image in frontal or near frontal pose. The CVAE-
LSTM network generates sequences of 25 frames. After
each sequence the reference pose is initialized with the
last generated pose in the previous sequence. For each
pose in the sequence Gposc generates pose deviation op
from the reference pose. The pose is represented by a
six-dimensional pose vector consists of euler rotation and
translation coefficients. The final predicted pose is used to
transform the neutral landmark L., via a rigid alignment
(using nose landmarks) to pose landmarks Lyose. Gpose 18
trained using GT pose supervision from dataset RAVDESS
[6] since it has slightly higher variations in head pose than
MEAD.

The Image Generation Network G'ipage, as shown in
Fig. 4 in the main paper is trained in two stages. In the
pre-training stage, the entire network G'jpqge is trained on
the large-scale [15] dataset which contains mostly neutral
and smiling faces, but does not contain emotion labels. The
emotion label input is randomly assigned during the pre-
training to reduce biasness towards any given emotion. Dur-
ing the expression finetuning stage, the network layers of
the pose branches of the G.,, and the identity encoder of
the expression inpainting branch are frozen, while remain-
ing layers are finetuned on the emotional training dataset.

Gimage is trained using Adam Optimizer with an ini-
tial learning rate of 0.0002, 51 = 0.5, B2 = 0.999 and
weight decay of 0.0001, and batch size of 24 on a aingle 48
GB NVIDIA A100 GPU. Gezp and Gpose are trained us-
ing Adam Optimizer with an initial learning rate of 0.0001,
61 = 0.9, B2 = 0.999, weight decay of 0.0004 and batch
size 100 respectively. Gimage is pre-trained for 25 epochs
for 8 days on a single NVIDIA A100 GPU on 210 subjects
from large scale dataset HDTF [15]. Then the expression
flow-guided branches of Gjpqge are finetuned for 5 epochs
(around 6 hours) on emotional training data consisting of to-
tal 60 subjects from MEAD [10] and RAVDESS [6]. Train-
ing G takes around a day with batch size 256. Training
G pose takes around 4 hours with batch size 100.

2. Justification for Emotion-controllable Head
movements

Table 1 demonstrates the standard deviation of head
movements on ground truth videos from RAVDESS dataset
(computed by the displacement of the nose tip landmark
over the entire video). It can be seen that the degree of head
movements is lowest for neutral emotion, and the degree
of head movements is higher for happy and neutral. This
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Figure 1. Ablation study of loss parameters of Texture Generation network. We have presented qualitative and quantitative
ablation by removing each of the loss term in the texture generation in Fig. 8 and Table 3 in the original paper. The loss importance
parameters in the paper were heuristically chosen for best results (identity preservation, texture quality) based on random search.
Our method is not extremely sensitive to the choice of loss importance weights, as indicated by the results.

motivates us to learn emotion-controllable head movements
which is not explored in prior works.

Emotion SD

neutral 6.75
angry 38.35
disgusted | 24.25

fear 28.23
happy 33.33
sad 18.41

surprised | 16.89

Table 1. Standard deviation of head displacements on RAVDESS
dataset.

3. Additional Results

Results on neutral emotion: To demonstrate that the
performance of our model pre-trained on neutral emotion

is comparable with state-of-the-art talking head methods in
neutral emotion, we present quantitative results on HDTF
test data in Table 3 and qualitative results in Fig. 3. Our
method achieves the best value for texture quality met-
ric FID, and also outperforms existing methods in identity
preservation, indicated by the highest CSIM value. Al-
though SadTalker achieves the highest lip sync accuracy,
our M/F-LMD is lower indicating good lip sync in terms of
facial landmarks.

4. Limitations and Future Scope

One limitation of our method is that retaining the gen-
eralization ability after expression finetuning is challeng-
ing owing to the limited variety of the emotional training
data. Hence early stopping is crucial to prevent overfit-
ting on the smaller training set of emotional data. The dis-
entangled pose and expression flow computation does not
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Figure 2. Ablation study of loss parameters of Pose Generation
network. The chosen configuration results in higher pose di-
versity.

Method SSIM? FID| M/F-LMD| CSIM1 Synceons 1
MakeltTalk [17] | 0.593  28.243 4.45/5.08 0.838  2.563
Wav2Lip [7] 0.618 21725 3.63/4.54 0.849 5227
PC-AVS [16] 0422 69.127 3.93/10.51 0.683  2.701
Audio2Head [11] | 0.60 24392 2.48/8.34 0.823  3.90
AVCT[12] 0755 22432 3.61/2.73 0.811  3.147
FGTF [15] 0.840 - 0.39- - 5.166
SadTalker [14] | 0.532  22.057 2.39/2.01 0.843  7.290
Ours 0798 1470 0.82/0.73 0.856  5.287

Table 2. Quantitative Comparison with one-shot neutral emotion meth-
ods on neutral emotion dataset HDTF. The best value of a metric is marked
in Bold and the second best is marked in Blue. Note: Wav2Lip and PC-
AVS are evaluated using a single identity reference image. Since the full
code/pre-trained models for FGTF [15] are not available, we report the
available metrics from their paper.

take into consideration any temporal constraints, which is
another limitation of our method. Future directions might
be in adding temporal constraints in the disentangled opti-
cal flow generation for smoother temporal transitions in the
synthesized animation.
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