Appendix

1. Dataset Details

NYUv2 contains 1449 densely labelled RGB-depth images of indoor scenes. The raw dataset contains images with
incomplete depth values; which are masked during training. The tasks associated with this dataset are 13-label semantic
segmentation, depth estimation, and surface normals prediction. The dataset does not contain surface normal labels out-of-
the-box, so following the literature [9]], we used the pseudo ground surface normals data obtained from [4], which include
some incomplete values at the same locations as the corresponding depth maps. The training and validation sets contain 795
and 654 images respectively, and the resolution of the images is 288 x 384.

Cityscapes is a larger dataset containing 3475 outdoor urban street scenes with fine annotations taken from 50 cities over
several months of the year. From the set of fine annotations, we have 2975 train and 500 validation images. The tasks
associated with this dataset are 19-label semantic segmentation and depth estimation. The labels used are from their official
documentation that group several labels into a void class, and specify 19 other labels that should be used during training. The
resolution of the images is 128 x 256.

PASCAL-Context [[13] is an even larger dataset derived from the PASCAL VOC 2010 challenge (S]], containing pixel-
wise annotations for 10,103 images. These images cover a wide range of indoor and outdoor scenes with various objects.
The dataset includes 4,998 training and 5,105 validation images. The tasks associated this dataset are 21-label semantic
segmentation, human parts segmentation, edge detection, saliency, and surface normals. The resolution of the images varies,
so they are padded and scaled to 512 x 512.

2. Related Works

PAD-Net [19]] is the first work to popularize the “task prediction distillation” framework. Their cross-task distillation
module uses EM attention, which can capture local patterns intra- and inter-task, but lacks the ability to model long-range
dependencies. PAP-Net [22] is another distillation algorithm that explicitly models feature similarities, known as “task
affinity” using MM attention. Although they capture local and long-range dependencies intra-task, their simplistic cross-task
diffusion mechanism inhibits inter-task pattern propagation. MTI-Net [[15] extends distillation to multiple feature scales,
which is known as “multi-scale task-prediction distillation”. The cross-task distillation algorithm they use for each scale is
the same one used by PAD-Net (i.e., EM attention). The number of additional model parameters for generating initial task
predictions and cross-task distillation modules at multiple scales makes this method very inefficient as the input image size
and number of tasks increase. Also, this framework isn’t suited for most ViT-based backbones that output features as a single
scale.

The aforementioned cross-task distillation algorithms are inspired by the attention mechanism [[16[]; which allows net-
works to place greater emphasis on certain parts of an input that are important for the downstream task. For dense vision
tasks, it has been shown that attending to features in the spatial and/or channel dimensions leads to significant performance
improvements [[6,|18]]. Consequently, these notions have been extended to the MTL domain, which explored different ways
of modelling cross-task patterns using attention [9.(14}15}/19,22].

Other recent MTL works for dense scene predictions include ATRC [1], InvPt [20], and TaskPrompter [21]. ATRC
applies a neural architecture search (NAS) to learn a branching structure that considers the global features, local features,
source label, and target labels between every possible combination of task pairs. Although this study provides interesting
insights into optimal task interactions, it is difficult to justify its use in a real-world setting because it takes an incredible
amount of resources to train, and scales very poorly with more tasks. Hanrong Ye and Dan Xu [20,21]] create their own
multitask network based on the Vision Transformer (ViT) [3]]. The added model capacity allows them to explicitly model
local and global relationships between tasks. Despite both being encoder-focused works, they compare their results to the



decoder-focused distillation algorithms using CNN backbones. Although they perform an unfair comparison, the broader
consideration is that encoder- and decoder-focused algorithms are not mutually exclusive and can be used in a complimentary
fashion. Additionally, these encoder-focused methods are not practical for real-world application because they require a
handcrafted design for a given backbone; which are constantly evolving. Decoder-focused methods, like task-prediction
distillation methods, are modular and can be used with an arbitrary pretrained backbone.

3. Tasks and Performance Metrics

Semantic Segmentation refers to the task of assigning a class label to each pixel in an image. During training, the
objective is to minimize the depth-wise cross-entropy loss between the predicted labels ¢, and the targets y, for all IV pixels:
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We also evaluate our models on mean intersection over union (mloU) and absolute pixel accuracy. Given the true positives
(TP), false positives (FP), and false negatives (FN) for each image, we compute mloU as follows:
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Human Parts Segmentation is defined and evaluated in the exact same way as the semantic segmentation task. The only
difference between these tasks is the nature of the assigned labels. For human parts segmentation, pixels are assigned a label
based on a human body part rather than labels of objects (i.e., car, road, building).

Depth Estimation involves predicting the depth values at each pixel. During training, we aim to minimize the absolute
error (L norm) of the predicted values d, and the targets d:

ﬁDepth = Z Hdn - dAnH (3)
neN
We also report on the relative depth error:
Hdn — Jn”
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Surface Normals prediction involves estimating the direction perpendicular to the surface of objects in an image; making
it useful for acquiring geometric and structural scene information. We train the model to minimize the element-wise dot
product between the normalized predictions §, and the targets s:

1 .
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For evaluating surface normals prediction performance, we also consider the mean angular distance between § and s.
Angular distance is the arccosine of the sum of the element-wise product of § and s, as seen in Equation [§] We also report
the proportion of predictions that fall within 11.25, 22.5, and 30.0 degrees of error.

Dy = arccos(z Sp - Sn) (6)
neN

Saliency detection involves identifying the most visually important regions in an image. The model is trained to predict a
saliency map s, highlighting areas that are likely to attract human attention. During training, we minimize the pixel-wise
binary cross-entropy loss between the predicted saliency map S and the ground truth saliency map S. We evaluate using the
max F-measure, which evaluates the balance between precision and recall across different thresholds applied to the predicted
saliency map. The formula for the F-measure is:

(1 + (3?) - Precision - Recall
(82 - Precision) + Recall
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For the max-F measure, you compute the F-measure across multiple thresholds (7) and take the maximum:



max-Fg = max (Fg(11), F(72), ..., F(Tn)) 8)

Edge detection involves detecting boundaries between different regions in an image. The model is trained to predict
binary edge maps E, where pixels corresponding to edges are labeled as 1 and others as 0. We minimize the binary cross-
entropy loss during training and evaluate using the validation loss.

MTL Gain [12] is an aggregate measure of the overall multitask improvement of method m with respect to a single task
learning baseline b for all tasks ¢ € [1, N}, as seen in Equation[9]
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where [; = 1 if a lower value of metric M is favorable, and 0 otherwise. We will treat A,,, as a percentage in our evaluation.
Although we use multiple metrics per task throughout our evaluations, we want to make sure that every task is weighed evenly
when calculating A,,, by selecting a single metric per task that best demonstrates generalization performance. Consequently,
to compute A,,, we will use mloU for segmentation, relative error for depth, mean angular distance for surface normals,
max F-measure for saliency, and validation loss for edge detection. We also show that we still achieve superior MTL gain
using other combinations of metrics in the Tab. [2]and Tab.[I] In our results, the metrics where larger values are favourable
are denoted with (1) and smaller values with ({.).

4. Results with Additional Metrics

In Tab.[2land Tab.|I} we can see that in addition to the results in main paper, we also outperform all other models using
other metrics for the Cityscapes and NYUv2 datasets. Therefore, using any combination of evaluation metrics to compute
the multitask gain (A,,) will show we still achieve the best overall multitask performance.

NYUv2 (CNN)

SemSeg Depth Normals

Ap t
Model mloU 1 pixAcct relErr] mErr] mErr 11251 2251 3071

STL 49.23 72.83 0.1636 0.3853 23.15 3518 6250 7348  +0.00
MTL 49.25 72.90 0.1658 0.3896 24.16 30.80 57.92 7041 -1.89

PAD-Net  50.23 73.46 0.1622 0.3814 23.63 3244 5951 71.68  +0.27
PAP-Net  50.00 73.25 0.1615 0.3876 23778 3190 5889 7122 +0.04
CTALss 51.59 74.14 0.1607 0.3808 22.84 3514 62.06 73.40 +2.64

MTI-Net  51.51 74.50 0.1538 0.3650 2350 3416 60.85 7231 +3.04
CTALy s 52.70 75.09 0.1529 0.3630 2299 3559 6225 7328 +4.76

Table 1. Validation set performance taken across all tasks on NYUv2 and Cityscapes using CNN backbones. Values in bold indicate the
best value in a given column for multitask models in SS and MS configurations.

5. Implementation Details

All CNN models are equipped with a pre-trained HRNet18 [17] multiscale feature extractor backbone. The single-scale
variants will use a fused version of the input features following the aforementioned CSF procedure. All transformer models
are equipped with a pre-trained SwinV2-s [[10] backbone. Since the output of the transformer backbone is an aggregated fea-
ture representation, only SS models are evaluated. The output heads for the initial predictions include two residual blocks [7]]
followed by an output convolution layer. The initial predictions used for task-prediction distillation are the outputs of the
second residual block. The final output heads for the CNN models use the same architecture as the heads used for the initial
predictions, but for Transformer models, we use a DeepLab [2] head to get the final predictions since it is still a popular
choice for dense prediction tasks like segmentation. The implementation code for all baseline networks is taken from [15]],
except for PAP-Net which we carefully implemented ourselves since there was not a publicly available implementation.



Sem. Seg. Depth

Model mloU 1 pixAcct  relErr ] mErr |

STL 48.89 90.87 2991 1.296

MTL 49.78 91.07 31.80 1.155
PAP-Net  50.82 91.19 2697 1.135
PAD-Net 50.67 91.24 27.37 1.136

CTALgss 51.36 91.34 23.84 1.119

MTI-Net 51.77 91.13 2990 1.141
CTALys 5194 91.27 22.89 1.127

Table 2. Validation set performance taken across all tasks on NYUv2. Values in bold indicate the best value in a given column for multitask
models in SS and MS configurations.

6. Hyperparameters

We train our models using an Adam [8] optimizer with a weight decay of 1 x 10~*. The learning rates are 1 x 1074,
5 x 1074, and 2 x 1075 for NYUv2, Cityscapes, and PASCAL-Context respectively. We performed a small learning rate
search (within the range of le-2 and le-5) for each model to ensure that this configuration was favourable for all baselines.
We also use a cosine annealing learning rate scheduler [11]] for smooth convergence. Multi-scale models tend to converge
early for Cityscapes, so for them, we used a cosine annealing learning rate scheduler with warm restarts [11]] to promote
exploration and escape local minima. For all datasets, we use a batch size of 8, a blending factor v = 0.05 (like PAP-Net)
and filter size f = 3 for all our models. The values for v and f were not tuned for each dataset, and our models show
little sensitivity to these parameters. We train for 200, 75, and 70 epochs on NYUv2, Cityscapes, and PASCAL-Context
respectively using a single NVIDIA RTX A5000 GPU. The training time per run in this setup was approximately 4 hours for
NYUv2, 1 hour for Cityscapes, and 9 hours for PASCAL-Context.

7. Hyperparameter Sensitivity

7.1. Blending Factor ~

Sem. Seg. Depth Normals MTL Gain
mloU 7T relErr | mErr] A T

0.025  50.68 0.1608  22.53 +2.45
EMA-Net (SS) 0.050  51.59 0.1607  22.84 +2.64
0.100  52.49 0.1631  22.84 +2.76

Model

0.025  51.71 0.1526  23.01 +4.12
EMA-Net (MS) 0.050  52.70 0.1529  22.99 +4.76
0.100  53.44 0.1557  23.06 +4.59

Table 3. Validation set performance taken across all tasks on NYUv2 for different values of blending factor .

As we can see from Table |3} there is noticeable variability in segmentation performance when using different blending
factors () for both SS and MS models. However, we can see that the performance of the other tasks compensates accordingly,
such that the overall MTL gain does not change significantly. This is consistent with the expected competitive nature between
tasks when training multitask systems.



Sem. Seg. Depth Normals MTL Gain

Model  f

mloU 1 relBrr| mErmr] AT

3 51.59 0.1607  22.84 +2.64

CTALgs 5 52.19 0.1630  22.89 +2.50
7 51.58 0.1640  22.79 +2.03

3 52.70 0.1529  22.99 +4.76

CTALys 5 53.21 0.1547  23.06 +4.64
7 52.70 0.1557  23.14 +3.97

Table 4. Validation set performance taken across all tasks on NYUv2 for different filter sizes f.

7.2. Filter Size f

In Table[d] we can see that using different filter sizes (f) for cross-task pattern modelling, we do not see a significant drop
in performance between f = 3 and f = 5. However, using too large of a filter size, i.e., f = 7, we can expect a drop in

performance.

8. Results With Standard Deviation

Tables [5]and [6] contain identical results presented in the main paper, but with the addition of the standard deviation across
all runs. This is to provide a notion of statistical confidence for our results. The formula used to compute the standard

deviation is as follows:

1 N
N 72
o N1 ;(xl T)
NYUV2
Model Sem. Seg. Depth Normals A, t
mloU (o) 1 relErr (o) | mErr (o) |

STL 49.23 (0.29) 0.1636 (0.0024) 23.15(0.09) +0.00
MTL 49.25 (0.43) 0.1658 (0.0028) 24.16 (0.05) -1.89
PAP-Net 50.00 (0.49) 0.1615 (0.0043) 23.78 (0.07) +0.04
PAD-Net  50.23 (0.41) 0.1622 (0.0016) 23.63 (0.06) +0.27
CTALgg 51.59 (0.33) 0.1607 (0.0008) 22.84 (0.06) +2.64
MTI-Net  51.51(0.63) 0.1538 (0.0011) 23.50(0.04) +2.64
CTALy s  52.70 (0.34) 0.1529 (0.0027) 22.99 (0.06) +4.76

Table 5. Average validation set performance taken across all tasks on NYUv2 for 3 runs. Values in bold indicate the best value in a given
column for multitask models in SS and MS configurations. Values in brackets indicate the standard deviation across three runs.



Cityscapes

Model Sem. Seg. Depth A, t
mloU (o) 1+ relErr (o) |

STL 48.89 (0.74) 29.91(0.88) +0.00
MTL 49.78 (0.36) 31.80(0.48) -2.25
PAP-Net  50.82 (0.72) 26.97 (0.67) +6.89
PAD-Net  50.67 (0.44) 27.37 (0.52) +6.07
CTALgs  51.36 (0.64) 23.84 (0.58) +12.67
MTI-Net  51.77 (0.84) 29.90 (0.48) +2.96
CTAL,;s 5194 (0.26) 22.89 (0.48) +14.85

Table 6. Average validation set performance taken across all tasks on Cityscapes for 3 runs. Values in bold indicate the best value in a
given column for multitask models in SS and MS configurations. Values in brackets indicate the standard deviation across three runs.
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