
A. Appendix/Supplemental material

A.1. Detailed Experiments Setting

We implemented the Bit-flip Latency Attack using Py-

Torch 1.9.1 [21] on 10 NVIDIA Tesla V100-SXM3 GPUs

[20]. To ensure a comprehensive evaluation, we tested

several YOLO models, including YOLOv3, YOLOv4,

YOLOv5, and YOLOv7 [1, 15, 24, 25, 31]. These models

were initially pre-trained on the MS-COCO 2017 dataset

(118K training images, 80 classes) [18] and subsequently

fine-tuned on the BDD100k (100K training images, 10

classes) [34] and Pascal VOC (11K training images, 20

classes) [11] datasets using the PhantomSponges frame-

work [26]. This fine-tuning aimed to adapt the models to

diverse object detection contexts and validate the attack’s

effectiveness across various scenarios.

Specifically, the MS-COCO 2017 dataset comprises

118K training and 5K validation images across 80 object

classes. BDD100k, used for autonomous driving, includes

100K images across 10 classes and various environmental

conditions. The Pascal VOC dataset provides 11K training

images across 20 categories. For the attack experiments, we

trained the models on a subset of 2000 images (640 x 640)

for 70 epochs, with a learning rate of 0.1 and the Adam

Optimizer [17]. To maintain consistent settings across all

the experiments, we enabled inference with augmentation,

which yielded up to 45,147 detections per image.

For baselines, we benchmarked our attack against a few

state-of-the-art latency attacks, such as PhantomSponges

(PS) [26] and Overload [3]. Since our work is the first to ex-

plore bit-flip attacks on object detection models, direct com-

parisons with other methods are either inappropriate or in-

feasible. This is because latency-based attacks are typically

designed to exploit specific vulnerabilities and optimiza-

tion strategies unique to individual models or applications,

which limits overlap between different attacks and makes

cross-application comparisons impractical. For example,

although PandaSloth [13] and NICGSlowdown [6] also ad-

dress latency attacks, they target applications other than ob-

ject detection. Although SlowTrack [19] shares some sim-

ilarities in attacking object detection, it mainly focuses on

latency in tracking, which involves following objects over

time rather than detecting them in individual frames. We

will continue to monitor advancements in this field to up-

date our comparisons with emerging research.

A.2. Additional Evaluations

In addition to the experiments presented in the paper, we

conducted further evaluations to analyze specific aspects of

our attack. Specifically, we tested the attack on CPUs and

GPUs to evaluate how our method performs across differ-

ent hardware configurations used for model execution. Ad-

ditionally, we examined the effects of the attack on model

recall to demonstrate its ability to minimize undesired side

effects while maintaining its effectiveness.

Latency increase on CPU and GPU platforms: To

evaluate our attack’s performance across different plat-

forms, we conducted tests on both CPUs and GPUs to un-

derstand how hardware differences affect the latency in-

duced by our attack. We used YOLO models v3, v4, v5,

and v7, and three datasets: COCO, VOC, and BDD100k.

The results, presented in Fig. 1, are normalized against

the model’s baseline performance (i.e., without the attack)

to provide a clear comparison. We specifically analyzed

the latency introduced by the NMS filter, as it is a criti-

cal component in object detection that can amplify latency

changes. Our findings reveal that the attack significantly

impacts latency on both types of platforms. On GPUs, la-

tency increases by an average factor of 5× to 20×, while

on CPUs, it jumps by 100× to 200×. Notably, in several

instances, the attack causes latency spikes exceeding 20×
on GPUs and 200× on CPUs. Even in the worst-case sce-

narios, our attack still induces a substantial latency increase

of nearly 5× on GPUs and 50× on CPUs, demonstrating

its effectiveness in degrading performance across different

hardware platforms.

Ability to preserve recall: The model’s recall value re-

flects the percentage of correctly detected objects in the im-

age. To evaluate the impact of our attack on the model’s

performance, we assessed how the recall decreases due to

the bit-flips induced by the attack. As illustrated in Fig. 2,

our attack effectively preserves 50% to 95% of the model’s

original recall, demonstrating its robustness in maintaining

detection performance despite the introduced bit-flips. This

performance surpasses previous methods, which achieved

only 20% to 70% retention of the original recall while also

inducing latency. Our results demonstrate that our attack ef-

fectively balances preserving a high percentage of detected

objects from the original model while significantly increas-

ing latency, thus enhancing its impact with minimal unin-

tended consequences.

A.3. Understanding Latency Attacks

In this section, we revisit latency attacks to explore their

growing appeal, focusing on key aspects such as attack ob-

jectives, incentives and potential attackers, and the com-

plexities of detection.

Objectives and impacts: Latency attacks aim at increas-

ing the execution times of neural network models. In criti-

cal real-time applications like autonomous driving, such de-

lays can have severe consequences. For example, if latency

causes a delay in object detection during obstacle avoid-

ance, it could lead to slower reaction times, increasing the

risk of collisions and endangering passenger safety [19].

In addition to execution delays, these attacks can signifi-

cantly affect energy consumption, leading to excessive bat-
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Figure 1. Evaluation of our attack performance on different hardware platforms.
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Figure 2. Normalized Recall and Normalized Latency Evaluation

under the proposed attack.

tery drain, overheating, and potential device failure [27].

This disruption in quality of service impairs system perfor-

mance and potentially causes damage to the hardware, high-

lighting the broader implications of latency attacks on both

safety and operational efficiency.

Incentives for attackers: Modern machine learning al-

gorithms are highly energy-intensive, making it crucial to

optimize hardware and software for efficient task comple-

tion. However, this reliance on optimization has introduced

vulnerabilities, allowing malicious actors such as competi-

tors or cybercriminals to exploit latency attacks. These at-

tacks can severely degrade the service quality and cause sys-

tem failures in real-time applications by increasing energy

consumption [4,27]. For example, competitors might inten-

tionally degrade a rival’s system performance to harm user

experience and tarnish the product’s reputation, potentially

gaining a competitive edge. Cybercriminals, on the other

hand, might use latency attacks to disrupt critical services,

such as financial systems or emergency response platforms,

leading to operational delays, financial losses, or compro-

mised safety. By inducing latency, attackers can create con-

fusion, diverting resources away from addressing other se-

curity threats and weakening the overall security posture of

the targeted organization.

Complexities in detection: Unlike integrity attacks that

might trigger sudden crashes, latency attacks subtly degrade

model performance over time, making them more challeng-

ing to detect immediately [5,7]. These attacks are designed

to impair performance gradually rather than cause abrupt

failures, which can be insidious. The impact of such degra-

dation may only become evident after extended periods of

operation, potentially affecting system reliability and user

experience in subtle, yet significant ways.

Moreover, our method employs bit-flips induced by row-

hammer to carry out latency attacks on object detection

models during runtime. These bit-flips cause temporary

changes since they occur while the model is still in mem-

ory [28, 33]. These modifications do not affect the on-disk

model unless explicitly saved, which is uncommon, making

detection more challenging. In contrast, bit-flip attacks on

inputs or data require direct changes to files, making them

more detectable. By targeting the model in memory, our at-

tack introduces transient changes that are less likely to be

immediately noticed.

Potential mitigation: While limiting the number of de-

tected objects may reduce the impact of latency attacks,

it does not eliminate the threat. Strictly setting thresholds

can result in the exclusion of legitimate objects, thereby di-

minishing model accuracy [4]. Moreover, even with strin-

gent thresholds, latency attacks can still cause significant

increases in latency. For instance, [19] has demonstrated



that these attacks can remain effective even with stringent

limits, increasing latency significantly and ultimately rais-

ing vehicle crash rates due to impaired object tracking.

A.4. Practical Feasibility of Bit-Flips

Utilizing row-hammer bit-flips to perform latency at-

tacks requires the attacker to execute a specific program

that repeatedly accesses memory while knowing targeted

memory locations within the victim model. This knowledge

enables the attacker to induce bit-flips at desired locations

within the model’s allocated memory areas. In practice,

while the memory characteristics of a model can be inferred

through the analysis of open-source models, profiling, and

other techniques [10, 12], actual bit-flip attacks necessitate

custom programs executed on the target machine. Fortu-

nately, direct hardware access or maintaining remote con-

trol is not required. Instead, attackers can leverage meth-

ods such as social engineering or exploiting vulnerabilities

to persuade the victim into downloading a malicious appli-

cation. Once installed, this application can automatically

trigger bit-flips during the model’s runtime, manipulating

the model’s performance without needing ongoing access

or physical contact with the victim’s hardware. For exam-

ple, [9] demonstrates a browser-based attack where bit-flips

are induced remotely via JavaScript executed in the victim’s

browser, illustrating the effectiveness of such attacks.

Obtaining the exact base address of the model remains

challenging. However, the malicious applications intro-

duced can dynamically locate the victim model’s mem-

ory address using several established techniques. Memory

or pointer scanning allows the application to find specific

values or patterns indicative of the model’s data, such as

weights or activations. Attackers can also use operating

system APIs to retrieve information about loaded modules,

which assists in locating the model’s address. Additionally,

when debugging symbols are available, they provide further

context for pinpointing the base address and other critical

memory locations. By using these methods, attackers can

navigate through multiple layers of address translation to

determine the base address of the model, enabling precise

identification of desired parameters and effective execution

of attacks.

Recent methods have explored active control over mem-

ory. For example, [33] describes multi-page memory mas-

saging, where attackers exploit the CPU’s cache to strategi-

cally place victim pages between attacker-controlled pages.

This involves requesting memory to ensure three consec-

utive rows in a DRAM bank are occupied and verifying

the placement through reverse engineering and side-channel

analysis [22]. Once exploitable pages are identified, they

are freed and quickly replaced with the victim’s pages, fa-

cilitating targeted bit-flips.

By inducing users to download and run specialized ma-

licious programs and employing techniques to locate mem-

ory addresses, attackers can feasibly execute bit-flip attacks

on the model. This demonstrates that bit-flip attacks are not

only theoretically sound but also practical and achievable in

real-world scenarios.

A.5. Extending Attacks to Various Architectures

Our attack method primarily focuses on Non-Maximum

Suppression (NMS) because using NMS is a mainstream

approach in many state-of-the-art object detection (OD)

models, where it is crucial for post-processing to refine de-

tection results. NMS is widely used for its effectiveness

in eliminating redundant bounding boxes and improving

detection accuracy. Aside from the direct transferability

we have tested on similar YOLO models with NMS, our

approach can also be extended to other object detection

models that incorporate NMS, such as Faster-RCNN [8].

For transformer-based designs, it is important to examine

whether the integrated detector head includes an NMS pro-

cess. For example, DETA [32] reintroduces NMS on top of

the DETR architecture to enhance detection accuracy. Our

method can be extended to such models with specific mod-

ifications to accommodate the specific implementations.

Recently, new object detection models have emerged that

aim to eliminate the traditional NMS filtering step, such as

YOLOv10 [30], DETR [2], and RT-DETR [35]. Although

our attack cannot be directly applied to these models, the

underlying attack logic remains relevant by targeting their

optimization strategies. For example, YOLOv10 employs

a Rank-guided block design to reduce computational re-

dundancy by replacing less critical blocks with compact in-

verted blocks (CIBs) that use simpler convolutions. Thus,

we can design a latency attack to exploit this optimization,

aiming to force the model to operate at full capacity while

maintaining high accuracy. In the future, we will further

investigate how to adapt our attack to other NMS-free ar-

chitectures.

A.6. Row-Hammer Deployment

Row-Hammer is a technique for inducing bit flips in

memory by repeatedly accessing specific memory rows.

This approach exploits the physical properties of DRAM to

cause unintended changes in adjacent memory cells. Row-

hammer is attractive for performing the designed latency

attack due to its efficiency and its recognition as a critical

security vulnerability affecting DRAM.

First introduced in a landmark ISCA 2014 study [16],

row-hammer induces bit flips by repeatedly accessing spe-

cific memory rows, exploiting DRAM’s physical properties.

This technique is typically executed through malicious ap-

plications that use designed memory access patterns, often

involving cache-flush instructions to bypass caching mech-

anisms and directly target vulnerable DRAM cells. Recent



advancements have significantly improved the effective-

ness, reducing the required memory accesses and increas-

ing precision. For instance, [29] demonstrated its use for

escalating privileges on mobile systems, while [23] showed

how to target specific memory locations by manipulating

access patterns. Further refinements by [14] optimized data

patterns, achieving a 72.4% success rate in targeted attacks

and reducing unintended bit flips by 99.7%. The severity of

the row-hammer vulnerability has worsened with DRAM

density increases over the past decade, resulting in a tenfold

reduction in activation requirements and a 500-fold increase

in bit-flip frequency for the same number of activations.

However, designing an effective row-hammer applica-

tion to induce bit flips requires specialized expertise in

memory manipulation and a deep understanding of hard-

ware systems. Our primary goal is to propose an attack

model that effectively leverages row-hammer, rather than

developing a specific row-hammer program. In practice,

we can utilize established row-hammer techniques, such as

those described in [23,33], and adapt them to target the spe-

cific memory models of object detection systems to achieve

optimal attack results.
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