
A. Appendix/Supplemental material

A.1. Detailed Experiments Setting

We implemented the Bit-flip Latency Attack using Py-

Torch 1.9.1 [21] on 10 NVIDIA Tesla V100-SXM3 GPUs

[20]. To ensure a comprehensive evaluation, we tested

several YOLO models, including YOLOv3, YOLOv4,

YOLOv5, and YOLOv7 [1, 15, 24, 25, 31]. These models

were initially pre-trained on the MS-COCO 2017 dataset

(118K training images, 80 classes) [18] and subsequently

fine-tuned on the BDD100k (100K training images, 10

classes) [34] and Pascal VOC (11K training images, 20

classes) [11] datasets using the PhantomSponges frame-

work [26]. This fine-tuning aimed to adapt the models to

diverse object detection contexts and validate the attack’s

effectiveness across various scenarios.

Specifically, the MS-COCO 2017 dataset comprises

118K training and 5K validation images across 80 object

classes. BDD100k, used for autonomous driving, includes

100K images across 10 classes and various environmental

conditions. The Pascal VOC dataset provides 11K training

images across 20 categories. For the attack experiments, we

trained the models on a subset of 2000 images (640 x 640)

for 70 epochs, with a learning rate of 0.1 and the Adam

Optimizer [17]. To maintain consistent settings across all

the experiments, we enabled inference with augmentation,

which yielded up to 45,147 detections per image.

For baselines, we benchmarked our attack against a few

state-of-the-art latency attacks, such as PhantomSponges

(PS) [26] and Overload [3]. Since our work is the first to ex-

plore bit-flip attacks on object detection models, direct com-

parisons with other methods are either inappropriate or in-

feasible. This is because latency-based attacks are typically

designed to exploit specific vulnerabilities and optimiza-

tion strategies unique to individual models or applications,

which limits overlap between different attacks and makes

cross-application comparisons impractical. For example,

although PandaSloth [13] and NICGSlowdown [6] also ad-

dress latency attacks, they target applications other than ob-

ject detection. Although SlowTrack [19] shares some sim-

ilarities in attacking object detection, it mainly focuses on

latency in tracking, which involves following objects over

time rather than detecting them in individual frames. We

will continue to monitor advancements in this field to up-

date our comparisons with emerging research.

A.2. Additional Evaluations

In addition to the experiments presented in the paper, we

conducted further evaluations to analyze specific aspects of

our attack. Specifically, we tested the attack on CPUs and

GPUs to evaluate how our method performs across differ-

ent hardware configurations used for model execution. Ad-

ditionally, we examined the effects of the attack on model

recall to demonstrate its ability to minimize undesired side

effects while maintaining its effectiveness.

Latency increase on CPU and GPU platforms: To

evaluate our attack’s performance across different plat-

forms, we conducted tests on both CPUs and GPUs to un-

derstand how hardware differences affect the latency in-

duced by our attack. We used YOLO models v3, v4, v5,

and v7, and three datasets: COCO, VOC, and BDD100k.

The results, presented in Fig. 1, are normalized against

the model’s baseline performance (i.e., without the attack)

to provide a clear comparison. We specifically analyzed

the latency introduced by the NMS filter, as it is a criti-

cal component in object detection that can amplify latency

changes. Our findings reveal that the attack significantly

impacts latency on both types of platforms. On GPUs, la-

tency increases by an average factor of 5× to 20×, while

on CPUs, it jumps by 100× to 200×. Notably, in several

instances, the attack causes latency spikes exceeding 20×
on GPUs and 200× on CPUs. Even in the worst-case sce-

narios, our attack still induces a substantial latency increase

of nearly 5× on GPUs and 50× on CPUs, demonstrating

its effectiveness in degrading performance across different

hardware platforms.

Ability to preserve recall: The model’s recall value re-

flects the percentage of correctly detected objects in the im-

age. To evaluate the impact of our attack on the model’s

performance, we assessed how the recall decreases due to

the bit-flips induced by the attack. As illustrated in Fig. 2,

our attack effectively preserves 50% to 95% of the model’s

original recall, demonstrating its robustness in maintaining

detection performance despite the introduced bit-flips. This

performance surpasses previous methods, which achieved

only 20% to 70% retention of the original recall while also

inducing latency. Our results demonstrate that our attack ef-

fectively balances preserving a high percentage of detected

objects from the original model while significantly increas-

ing latency, thus enhancing its impact with minimal unin-

tended consequences.

A.3. Understanding Latency Attacks

In this section, we revisit latency attacks to explore their

growing appeal, focusing on key aspects such as attack ob-

jectives, incentives and potential attackers, and the com-

plexities of detection.

Objectives and impacts: Latency attacks aim at increas-

ing the execution times of neural network models. In criti-

cal real-time applications like autonomous driving, such de-

lays can have severe consequences. For example, if latency

causes a delay in object detection during obstacle avoid-

ance, it could lead to slower reaction times, increasing the

risk of collisions and endangering passenger safety [19].

In addition to execution delays, these attacks can signifi-

cantly affect energy consumption, leading to excessive bat-



0

5

10

15

20

25

30

35

v3 v4 v5 v7 v3 v4 v5 v7 v3 v4 v5 v7

COCO VOC BDD100K

N
or

m
al

iz
ed

 L
at

en
cy

GPU

0

50

100

150

200

250

300

350

400

v3 v4 v5 v7 v3 v4 v5 v7 v3 v4 v5 v7

COCO VOC BDD100K

CPU

BaselineHigh Medium Low High Medium Low

High Latency Region Medium Latency Region Low Latency Region

GPU: CPU:

Overall:

Figure 1. Evaluation of our attack performance on different hardware platforms.

0
5
10
15
20
25
30
35

0

0.5

1

1.5

2

v3 v4 v5 v7 v3 v4 v5 v7 v3 v4 v5 v7

COCO VOC BDD100K

N
or

m
al

iz
ed

 L
at

en
cy

N
or

m
al

iz
ed

 R
ec

al
l

Recall Latency

Figure 2. Normalized Recall and Normalized Latency Evaluation

under the proposed attack.

tery drain, overheating, and potential device failure [27].

This disruption in quality of service impairs system perfor-

mance and potentially causes damage to the hardware, high-

lighting the broader implications of latency attacks on both

safety and operational efficiency.

Incentives for attackers: Modern machine learning al-

gorithms are highly energy-intensive, making it crucial to

optimize hardware and software for efficient task comple-

tion. However, this reliance on optimization has introduced

vulnerabilities, allowing malicious actors such as competi-

tors or cybercriminals to exploit latency attacks. These at-

tacks can severely degrade the service quality and cause sys-

tem failures in real-time applications by increasing energy

consumption [4,27]. For example, competitors might inten-

tionally degrade a rival’s system performance to harm user

experience and tarnish the product’s reputation, potentially

gaining a competitive edge. Cybercriminals, on the other

hand, might use latency attacks to disrupt critical services,

such as financial systems or emergency response platforms,

leading to operational delays, financial losses, or compro-

mised safety. By inducing latency, attackers can create con-

fusion, diverting resources away from addressing other se-

curity threats and weakening the overall security posture of

the targeted organization.

Complexities in detection: Unlike integrity attacks that

might trigger sudden crashes, latency attacks subtly degrade

model performance over time, making them more challeng-

ing to detect immediately [5,7]. These attacks are designed

to impair performance gradually rather than cause abrupt

failures, which can be insidious. The impact of such degra-

dation may only become evident after extended periods of

operation, potentially affecting system reliability and user

experience in subtle, yet significant ways.

Moreover, our method employs bit-flips induced by row-

hammer to carry out latency attacks on object detection

models during runtime. These bit-flips cause temporary

changes since they occur while the model is still in mem-

ory [28, 33]. These modifications do not affect the on-disk

model unless explicitly saved, which is uncommon, making

detection more challenging. In contrast, bit-flip attacks on

inputs or data require direct changes to files, making them

more detectable. By targeting the model in memory, our at-

tack introduces transient changes that are less likely to be

immediately noticed.

Potential mitigation: While limiting the number of de-

tected objects may reduce the impact of latency attacks,

it does not eliminate the threat. Strictly setting thresholds

can result in the exclusion of legitimate objects, thereby di-

minishing model accuracy [4]. Moreover, even with strin-

gent thresholds, latency attacks can still cause significant

increases in latency. For instance, [19] has demonstrated



that these attacks can remain effective even with stringent

limits, increasing latency significantly and ultimately rais-

ing vehicle crash rates due to impaired object tracking.

A.4. Practical Feasibility of Bit-Flips

Utilizing row-hammer bit-flips to perform latency at-

tacks requires the attacker to execute a specific program

that repeatedly accesses memory while knowing targeted

memory locations within the victim model. This knowledge

enables the attacker to induce bit-flips at desired locations

within the model’s allocated memory areas. In practice,

while the memory characteristics of a model can be inferred

through the analysis of open-source models, profiling, and

other techniques [10, 12], actual bit-flip attacks necessitate

custom programs executed on the target machine. Fortu-

nately, direct hardware access or maintaining remote con-

trol is not required. Instead, attackers can leverage meth-

ods such as social engineering or exploiting vulnerabilities

to persuade the victim into downloading a malicious appli-

cation. Once installed, this application can automatically

trigger bit-flips during the model’s runtime, manipulating

the model’s performance without needing ongoing access

or physical contact with the victim’s hardware. For exam-

ple, [9] demonstrates a browser-based attack where bit-flips

are induced remotely via JavaScript executed in the victim’s

browser, illustrating the effectiveness of such attacks.

Obtaining the exact base address of the model remains

challenging. However, the malicious applications intro-

duced can dynamically locate the victim model’s mem-

ory address using several established techniques. Memory

or pointer scanning allows the application to find specific

values or patterns indicative of the model’s data, such as

weights or activations. Attackers can also use operating

system APIs to retrieve information about loaded modules,

which assists in locating the model’s address. Additionally,

when debugging symbols are available, they provide further

context for pinpointing the base address and other critical

memory locations. By using these methods, attackers can

navigate through multiple layers of address translation to

determine the base address of the model, enabling precise

identification of desired parameters and effective execution

of attacks.

Recent methods have explored active control over mem-

ory. For example, [33] describes multi-page memory mas-

saging, where attackers exploit the CPU’s cache to strategi-

cally place victim pages between attacker-controlled pages.

This involves requesting memory to ensure three consec-

utive rows in a DRAM bank are occupied and verifying

the placement through reverse engineering and side-channel

analysis [22]. Once exploitable pages are identified, they

are freed and quickly replaced with the victim’s pages, fa-

cilitating targeted bit-flips.

By inducing users to download and run specialized ma-

licious programs and employing techniques to locate mem-

ory addresses, attackers can feasibly execute bit-flip attacks

on the model. This demonstrates that bit-flip attacks are not

only theoretically sound but also practical and achievable in

real-world scenarios.

A.5. Extending Attacks to Various Architectures

Our attack method primarily focuses on Non-Maximum

Suppression (NMS) because using NMS is a mainstream

approach in many state-of-the-art object detection (OD)

models, where it is crucial for post-processing to refine de-

tection results. NMS is widely used for its effectiveness

in eliminating redundant bounding boxes and improving

detection accuracy. Aside from the direct transferability

we have tested on similar YOLO models with NMS, our

approach can also be extended to other object detection

models that incorporate NMS, such as Faster-RCNN [8].

For transformer-based designs, it is important to examine

whether the integrated detector head includes an NMS pro-

cess. For example, DETA [32] reintroduces NMS on top of

the DETR architecture to enhance detection accuracy. Our

method can be extended to such models with specific mod-

ifications to accommodate the specific implementations.

Recently, new object detection models have emerged that

aim to eliminate the traditional NMS filtering step, such as

YOLOv10 [30], DETR [2], and RT-DETR [35]. Although

our attack cannot be directly applied to these models, the

underlying attack logic remains relevant by targeting their

optimization strategies. For example, YOLOv10 employs

a Rank-guided block design to reduce computational re-

dundancy by replacing less critical blocks with compact in-

verted blocks (CIBs) that use simpler convolutions. Thus,

we can design a latency attack to exploit this optimization,

aiming to force the model to operate at full capacity while

maintaining high accuracy. In the future, we will further

investigate how to adapt our attack to other NMS-free ar-

chitectures.

A.6. Row-Hammer Deployment

Row-Hammer is a technique for inducing bit flips in

memory by repeatedly accessing specific memory rows.

This approach exploits the physical properties of DRAM to

cause unintended changes in adjacent memory cells. Row-

hammer is attractive for performing the designed latency

attack due to its efficiency and its recognition as a critical

security vulnerability affecting DRAM.

First introduced in a landmark ISCA 2014 study [16],

row-hammer induces bit flips by repeatedly accessing spe-

cific memory rows, exploiting DRAM’s physical properties.

This technique is typically executed through malicious ap-

plications that use designed memory access patterns, often

involving cache-flush instructions to bypass caching mech-

anisms and directly target vulnerable DRAM cells. Recent



advancements have significantly improved the effective-

ness, reducing the required memory accesses and increas-

ing precision. For instance, [29] demonstrated its use for

escalating privileges on mobile systems, while [23] showed

how to target specific memory locations by manipulating

access patterns. Further refinements by [14] optimized data

patterns, achieving a 72.4% success rate in targeted attacks

and reducing unintended bit flips by 99.7%. The severity of

the row-hammer vulnerability has worsened with DRAM

density increases over the past decade, resulting in a tenfold

reduction in activation requirements and a 500-fold increase

in bit-flip frequency for the same number of activations.

However, designing an effective row-hammer applica-

tion to induce bit flips requires specialized expertise in

memory manipulation and a deep understanding of hard-

ware systems. Our primary goal is to propose an attack

model that effectively leverages row-hammer, rather than

developing a specific row-hammer program. In practice,

we can utilize established row-hammer techniques, such as

those described in [23,33], and adapt them to target the spe-

cific memory models of object detection systems to achieve

optimal attack results.

References

[1] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-

Yuan Mark Liao. Yolov4: Optimal speed and accuracy of

object detection. arXiv preprint arXiv:2004.10934, 2020. 1

[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In European confer-
ence on computer vision, pages 213–229. Springer, 2020. 3

[3] Erh-Chung Chen, Pin-Yu Chen, I Chung, Che-rung Lee,

et al. Overload: Latency attacks on object detection for edge

devices. arXiv preprint arXiv:2304.05370, 2023. 1

[4] Erh-Chung Chen, Pin-Yu Chen, I Chung, Che-Rung Lee,

et al. Overload: Latency attacks on object detection for

edge devices. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 24716–

24725, 2024. 2

[5] Simin Chen, Hanlin Chen, Mirazul Haque, Cong Liu, and

Wei Yang. The dark side of dynamic routing neural net-

works: Towards efficiency backdoor injection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 24585–24594, 2023. 2

[6] Simin Chen, Zihe Song, Mirazul Haque, Cong Liu, and Wei

Yang. Nicgslowdown: Evaluating the efficiency robustness

of neural image caption generation models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 15365–15374, 2022. 1

[7] Wencheng Chen and Hongyu Li. Stealthy energy

consumption-oriented attacks on training stage in deep learn-

ing. Journal of Signal Processing Systems, 95(12):1425–

1437, 2023. 2

[8] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,

2015. 3

[9] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.

Rowhammer. js: A remote software-induced fault attack in

javascript. In Detection of Intrusions and Malware, and
Vulnerability Assessment: 13th International Conference,
DIMVA 2016, San Sebastián, Spain, July 7-8, 2016, Pro-
ceedings 13, pages 300–321. Springer, 2016. 3

[10] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Bad-

nets: Identifying vulnerabilities in the machine learning

model supply chain. arXiv preprint arXiv:1708.06733, 2017.

3

[11] Derek Hoiem, Santosh K Divvala, and James H Hays. Pas-

cal voc 2008 challenge. World Literature Today, 24(1):1–4,

2009. 1

[12] Sanghyun Hong, Nicholas Carlini, and Alexey Kurakin.

Handcrafted backdoors in deep neural networks. Advances
in Neural Information Processing Systems, 35:8068–8080,

2022. 3

[13] Sanghyun Hong, Yiğitcan Kaya, Ionuţ-Vlad Modoranu, and

Tudor Dumitraş. A panda? no, it’s a sloth: Slowdown at-

tacks on adaptive multi-exit neural network inference. arXiv
preprint arXiv:2010.02432, 2020. 1

[14] Sangwoo Ji, Youngjoo Ko, Saeyoung Oh, and Jong Kim.

Pinpoint rowhammer: Suppressing unwanted bit flips on

rowhammer attacks. In Proceedings of the 2019 ACM
Asia Conference on Computer and Communications Secu-
rity, pages 549–560, 2019. 4

[15] Glenn Jocher, Ayush Chaurasia, Alex Stoken, Jirka Borovec,

Yonghye Kwon, Kalen Michael, Jiacong Fang, Colin Wong,

Zeng Yifu, Diego Montes, et al. ultralytics/yolov5: v6.

2-yolov5 classification models, apple m1, reproducibility,

clearml and deci. ai integrations. Zenodo, 2022. 1

[16] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye

Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai, and

Onur Mutlu. Flipping bits in memory without accessing

them: An experimental study of dram disturbance errors.

ACM SIGARCH Computer Architecture News, 42(3):361–

372, 2014. 3

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 1

[18] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pages 740–755. Springer, 2014. 1

[19] Chen Ma, Ningfei Wang, Qi Alfred Chen, and Chao Shen.

Slowtrack: Increasing the latency of camera-based percep-

tion in autonomous driving using adversarial examples. In

Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 38, pages 4062–4070, 2024. 1, 2

[20] NVIDIA. Nvidia tesla v100. https://www.nvidia.
com/en-us/data-center/v100/. 1

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming



Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-

perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.

1

[22] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael

Schwarz, and Stefan Mangard. {DRAMA}: Exploiting

{DRAM} addressing for {Cross-CPU} attacks. In 25th
USENIX security symposium (USENIX security 16), pages

565–581, 2016. 3

[23] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel, Cris-

tiano Giuffrida, and Herbert Bos. Flip feng shui: Hammer-

ing a needle in the software stack. In 25th USENIX Security
Symposium (USENIX Security 16), pages 1–18, 2016. 4

[24] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 1

[25] Joseph Redmon and Ali Farhadi. Yolov3: An incremental

improvement. arXiv preprint arXiv:1804.02767, 2018. 1

[26] Avishag Shapira, Alon Zolfi, Luca Demetrio, Battista Big-

gio, and Asaf Shabtai. Phantom sponges: Exploiting non-

maximum suppression to attack deep object detectors. In

Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pages 4571–4580, 2023. 1

[27] Ilia Shumailov, Yiren Zhao, Daniel Bates, Nicolas Paper-

not, Robert Mullins, and Ross Anderson. Sponge examples:

Energy-latency attacks on neural networks. In 2021 IEEE
European symposium on security and privacy (EuroS&P),
pages 212–231. IEEE, 2021. 2

[28] M Caner Tol, Saad Islam, Andrew J Adiletta, Berk Sunar,

and Ziming Zhang. Don’t knock! rowhammer at the back-

door of dnn models. In 2023 53rd Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks
(DSN), pages 109–122. IEEE, 2023. 2

[29] Victor Van Der Veen, Yanick Fratantonio, Martina Lindorfer,

Daniel Gruss, Clémentine Maurice, Giovanni Vigna, Herbert

Bos, Kaveh Razavi, and Cristiano Giuffrida. Drammer: De-

terministic rowhammer attacks on mobile platforms. In Pro-
ceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pages 1675–1689, 2016. 4

[30] Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jun-

gong Han, and Guiguang Ding. Yolov10: Real-time end-

to-end object detection. arXiv preprint arXiv:2405.14458,

2024. 3

[31] Chien-Yao Wang, Alexey Bochkovskiy, and Hong-

Yuan Mark Liao. Yolov7: Trainable bag-of-freebies sets

new state-of-the-art for real-time object detectors. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 7464–7475, 2023. 1

[32] Kai Yang, Haijun Zhang, Feng Gao, Jianyang Shi, Yan-

feng Zhang, and QM Jonathan Wu. Deta: A point-based

tracker with deformable transformer and task-aligned learn-

ing. IEEE Transactions on Multimedia, 25:7545–7558,

2022. 3

[33] Fan Yao, Adnan Siraj Rakin, and Deliang Fan.

{DeepHammer}: Depleting the intelligence of deep

neural networks through targeted chain of bit flips. In 29th

USENIX Security Symposium (USENIX Security 20), pages

1463–1480, 2020. 2, 3, 4

[34] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying

Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-

rell. Bdd100k: A diverse driving dataset for heterogeneous

multitask learning. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages

2636–2645, 2020. 1

[35] Yian Zhao, Wenyu Lv, Shangliang Xu, Jinman Wei,

Guanzhong Wang, Qingqing Dang, Yi Liu, and Jie Chen.

Detrs beat yolos on real-time object detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16965–16974, 2024. 3


