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This supplementary document complements the main
paper with additional dataset statistics and presents more
detailed results of detection, segmentation and tracking
evaluations. Moreover, we illustrate the generalization ca-
pacity of our approach to various application domains and
conclude with selected corner cases to facilitate a more
comprehensive understanding.

A. Extended dataset description and statistics

The following sections include detailed statistics and il-
lustrations regarding the process of dataset creation and its
final composition.

A.1. Data acquisition

Fig. 1 shows the ratios of images captured during specific
times of day and months. In 141 recording sessions, we cap-
tured a wide variety of seasonal aspects as well as lighting
and weather conditions across eight different months. Most
data was recorded in winter and early spring, as this is a
popular time for harvesting timber. As a result, about 9%
of total images contain snow. Autumn is currently under-
represented and will be the focus of future data campaigns,
although winter conditions without snow show partly sim-
ilar characteristics. In addition to seasonal changes, Tim-
berVision covers a range of daytime variations. Frequent
recording times range from morning to late afternoon, while
a smaller percentage was captured in the evening. In total,
16 images show dusk or night scenarios.

We captured images for TimberVision using a total of
10 different sensors, which are listed in Tab. 1 along with
their corresponding resolutions and the number of images
included in the respective subsets. The additional Open-
Source subset contains 42 images with resolutions rang-
ing from 672x504 to 3176x2039 pixels. We furthermore
recorded image sequences with high scene entropy and log
quantities using a DJI Mavic 2 Pro UAV, which were used
exclusively for qualitative analysis.

Figure 1. Hourly and monthly recording-time distributions of an-
notated TimberVision images.

A.2. Annotation concept

To complement the analysis of other state-of-the-art
datasets presented in Tab. 2 of the main paper, Fig. 2
compares our annotation concept to the approaches of the
two most closely related works. Both provide instance-
segmentation masks on the level of trunks, while our dataset
includes multiple classes for their individual components.
TimberSeg focuses on the detection of cut logs and Cana-
Tree100 on live trees, while we include annotations for both
types of trunks, separable by their id range. Furthermore,
since the target scenario of TimberSeg is mainly log manip-
ulation, only the top layer of log piles is annotated, while
we include all visible trunks in a pile, as visible in the top
row. Regarding live trees, not all instances in the far back-
ground can reasonably be annotated in dense forest scenar-
ios as visible in the second row of images. Our dataset
and CanaTree100 set different thresholds for this purpose,



Sensor Width Height Images Subset
ZED 2 1280 720 304 Loading, Harvesting, Tracking
Sony Xperia PRO-I 1280 720 217 Tracking
Sony Xperia XZ2 Compact 1500 844 8 Core
Sony Xperia PRO-I 1920 1080 30 Core
Sony Xperia PRO-I 2016 1134 29 Core
Sony Alpha 7S 2120 1192 192 Core
Huawei P20 Lite 2304 1296 70 Core
iPhone 12 Mini 2016 1512 279 Core
Samsung Galaxy S10+ 2016 1512 4 Core
Huawei P20 Lite 2048 1536 23 Core
Blackfly BFS-PGE-31S4C-C 2048 1536 10 Loading
Samsung Galaxy S5 Neo 2304 1728 201 Core
Sony Xperia XZ2 Compact 2666 1500 549 Core, Tracking
Sony Alpha 6000 3000 2000 30 Core

Table 1. List of sensors used for data acquisition along with their resolutions, numbers of annotated images and associated subsets.

Figure 2. Comparison of annotation schemes in TimberSeg [2], CanaTree100 [3] and TimberVision using original images and correspond-
ing annotations. Orange denotes trunks in single-class annotations, while green and pink identify our Cut and Side classes, respectively.
Bound instances overlapping with them are visualized in slightly lighter shades.

which further reduces compatibility, as the same tree may
be included in the annotations of one dataset but not the
other. Furthermore, the three datasets were recorded at dif-
ferent geographical locations and therefore depict different
tree species. Overall, these aspects illustrate the difficulty of
comparing the few existing instance-segmentation datasets
in the domain of forestry operations or conducting cross-
evaluations without substantial limitations or adaptations.
On the other hand, the limited compatibility with any exist-
ing work shows that our dataset indeed addresses a relevant
data gap and represents a valuable complementary addition

to the state of the art. To further illustrate our annotation ap-
proach, an extended set of representative ground-truth sam-
ples is presented in Fig. 3.

A.3. Distribution of scene parameters

For a more detailed analysis of our training setup, the
distribution of scene-parameter intensities across our per-
session split between training, validation and test data is
shown in Tab. 2. It demonstrates that combining the valida-
tion and test samples in the evaluation of scene-parameter
impact in Fig. 7 of the main paper results in a sufficient



Figure 3. Additional representative examples of semi-
automatically generated annotations for instance segmentation of
multiple trunk components in the TimberVision dataset.

representation of each intensity.
To provide more insights about our tracking evaluation

and the sequences it is based on, we also summarize the
distribution of scene parameters across their keyframes in
Fig. 4. It shows similar characteristics to the distributions
in the overall dataset depicted in Fig. 2 of the main paper
and therefore comparable difficulty to the test set used for
evaluating detection and fusion performance.

A.4. Instance statistics

As an addition to the dataset analysis, this section pro-
vides extended statistics regarding instance characteristics
and distributions across the TimberVision dataset. Firstly,
Tab. 3 shows the numbers of trunk components included in
each subset. Fig. 5 and Fig. 6 show the distributions of their
sizes and orientations, respectively. As expected, Bound in-
stances are on average the smallest and Side instances the
largest class, with some of the latter even exceeding im-
age dimensions if the trunk is located diagonally across the

Scene Parameter Train Val Test

Entropy
- 990 202 175

190 42 64
+ 23 15 21

Quantity
- 634 157 135

522 91 118
+ 47 11 7

Distance
- 730 164 159

450 90 92
+ 23 5 9

Irregularity
- 459 107 133

348 86 63
+ 396 66 64

Table 2. Numbers of images in the training, validation and test
splits depicting Low, Mid and High intensities of each annotated
scene parameter.

Figure 4. Distribution of scene parameters for annotated
keyframes in the Tracking subset.

Subset Cuts Sides Bounds
Core 9,535 17,617 6,293
Loading 2,522 3,589 2,671
Harvesting 345 825 550
OpenSource 607 743 284
Tracking 528 1,907 1,273
TimberSeg* 425 922 702

13,962 25,603 11,773

Table 3. Detailed statistics of annotated trunk components in all
subsets of the TimberVision dataset.

image. Fig. 5 shows the elongated characteristic of Sides
and Bounds, while Cuts are closer to square shapes. On the
other hand, there is a strong peak regarding orientations of
Cut instances. Since they are often viewed slightly from the
side, they tend to form an upright oval projection in the im-
age plane. Side orientations are more uniformly distributed
with a slight bias towards completely horizontal or verti-
cal orientations, the latter resulting mainly from upright live
trees in contrast to cut trees which are arbitrarily oriented in
image space. Bounds show a corresponding behaviour, as
they form the end points of Side instances.



Figure 5. Distribution of instance sizes for each class based on oriented-bounding-box dimensions. Instance width refers to the box side
connecting the leftmost corner with the adjacent one in counter-clockwise direction, meaning that a value larger than the corresponding
height indicates an orientation below ninety degrees in Fig. 6.

Figure 6. Distribution of instance orientations by class in 20-
degree intervals around the given values. The angles are measured
between the longest oriented-bounding-box side and the horizon-
tal axis.

Furthermore, the heat maps in Fig. 7 illustrate instance-
mask distributions across normalized image space. Cut and
Side instances appear in all positions across the area. How-
ever, since many images are captured with hand-held de-
vices from an eye-level perspective, the former tend to be
mainly in the lower central region, while the latter are of-
ten found in slightly higher positions. Bound instances, on
the other hand, are clustered along the image edges, as they
are usually part of entire visible trunks. The distributions
of all classes are largely symmetrical and closely related to
realistic application scenarios.

Overall, the statistics show that our data covers a wide
range of relevant scene configurations. The characteristics
of all classes closely match those to be expected in most
target applications.

B. Extended quantitative evaluation
The following tables provide further details regarding

the quantitative evaluation of ablation and detection experi-
ments. Tab. 4 shows individual detection results of the sub-
sets comprising Base in Tab. 3 of the paper to differentiate
model performance for specific types of input data and sce-
narios. As opposed to the overall evaluation, the validation
images are included in addition to the test set to achieve

Figure 7. Heat maps illustrating the distribution of instance-
segmentation masks within normalized image space for each class.
Values are normalized between their respective minima and max-
ima, which are stated relative to the total numbers of instances for
each class (i.e. a white area for the Side class indicates that 4.82%
of Side instances include this position).

Core Load Harvest Open

OOD Cut 83.0 79.5 80.4 80.8
Side 59.8 66.3 47.1 45.0

ISEG Cut 77.4 67.0 67.7 72.1
Side 61.2 69.7 45.3 45.4

Table 4. Model performance as mAP50-95 for the classes Cut and
Side for test and validation images of the Core, Loading, Har-
vesting and OpenSource subsets. Results are reported for Large
models trained and evaluated on the same image resolution of 1024
pixels.

a representative number of samples for each subset. Core
constitutes the largest part of the test set and is therefore
most closely related to the overall results. The Cut class
is consistently well detected across all subsets, while Side
achieves the best results for Loading scenarios, but does not
perform as well for Harvesting and OpenSource data. This
is consistent with its performance on the TimberSeg* sub-
set presented in the paper, which commonly features these
kinds of scenes. A possible reason for this behaviour, apart
from the lower number of samples for harvesting scenarios,
might be that the corresponding scenes often contain a high



FPID ↓ FNID ↓ TPID ↑ MT ↑ PT ↑ ML ↓ Misses ↓ Switches ↓ Frag. ↓
ByteTrack 202 718 1,124 87 42 42 559 68 51
Bot-SORT 181 696 1,146 87 42 42 560 66 51
Optimized 194 681 1,161 89 43 39 534 63 51
Opt | 10fps 245 806 1,036 82 48 41 606 129 65

Table 5. Additional Clear-Mot [1] and ID [4] metrics for all Tracking sequences including 266 keyframes with 1,842 ground-truth annota-
tions. FPID, FNID and TPID denote false positives, false negatives and true positives according to the ID metric. MT, PT and ML denote
the numbers of mostly tracked, partly tracked and mostly lost objects, respectively.

Precision Recall mAP50-95

Base 84.3 72.9 57.5
TimberSeg - 50.8 -

Table 6. OBB accuracy for fused trunks on our test set (Base) and
the original TimberSeg dataset. Since the latter does not include
annotations for all trunk instances, only recall is applicable.

number of live trees in the far background, which are incon-
sistently detected and especially challenging for detection
approaches in general.

Furthermore, detailed experimental results of our class
ablations for oriented object detection and instance segmen-
tation, which serve as the basis for Fig. 6 in the main paper,
are listed in Tab. 7. Additionally, the ablation of both learn-
ing tasks is shown in Tab. 8 and forms the basis for Fig. 5
in the main paper.

C. Extended fusion and tracking results

In addition to the fusion results presented in the main
paper, Tab. 6 gives an idea of the models’ generalization ca-
pability using the original TimberSeg dataset. Since fusion
results are entire Trunk instances, we can use the provided
annotations for this class, but still only compare recall, as
they do not cover all visible instances (see Fig. 2). The per-
formance drop is consistent with the one for our selected
and newly annotated subset presented in Tab. 3 of the main
paper. However, according to [2], even models trained and
tested only on splits of the 220 TimberSeg images do not
yield recalls beyond 65.2% or mAP scores beyond 57.5 for
the same class, proving the challenging nature of the data.

Fusion results serve as an input for multi-object tracking,
for which we list additional MOT metrics in Tab. 5. Fine-
tuning experiments on TimberSeg and CanaTree100 with
models pre-trained on our TimberVision dataset and MS
COCO are illustrated by Fig. 8, which shows mAP scores
on the validation set for each training epoch of the experi-
ments described in Tab. 5 of the main paper. As discussed,
training times can be significantly reduced when using our
models as basis for fine-tuning datasets of similar domains.

Figure 8. Validation accuracy after each training epoch when fine-
tuning on TimberSeg and CanaTree100 with models pre-trained on
MS COCO and our TimberVision dataset. Experiments are based
on Large model architectures with an input size of 1024. mAP
scores are derived from five-fold validation experiments.

D. Extended qualitative results

To further illustrate our discussion of results and poten-
tial application scenarios, we show extended qualitative re-
sults, clustered by their subsets of the TimberVision dataset.
None of the listed images were included during training or
validation. In addition to representative results on the Core
subset (Fig. 9) and in typical Loading and Harvesting sce-
narios (Fig. 10), we demonstrate the generalization poten-
tial of our approach on samples of the TimberSeg dataset [2]
(Fig. 11) and OpenSource images (Fig. 12). This is comple-



Oriented Object Detection Instance Segmentation
Size C S B C S T CBox SBox CMask SMask TBox TMask

n 768 76.5 22.6 49.7 76.7 49.1 55.9 75.5 55.5 69.8 49.0 64.6 59.1
1024 77.8 22.3 49.3 77.7 50.1 56.8 77.5 56.7 72.8 50.3 64.7 59.6

m 768 79.8 25.7 54.7 79.8 54.7 61.2 78.7 62.0 72.9 56.5 69.2 65.4
1024 80.8 27.0 55.9 81.1 56.0 62.7 80.0 62.0 75.5 56.6 70.5 66.5

x 768 80.8 28.7 56.6 81.0 56.6 63.8 79.5 63.1 73.9 58.7 70.6 67.0
1024 81.9 30.5 58.4 82.1 58.4 65.3 80.7 64.1 75.8 59.3 71.5 68.3

Table 7. Complete results of class ablation experiments for the model capacities Nano (n), Medium (m) and X-Large (x) and different image
sizes for the classes Cut, Side, Bound and Trunk. All scores are given as mAP50-95 on the test set. In the case of instance segmentation,
scores are reported separately for the Box and Mask stages.

Oriented Object Detection Instance Segmentation
Size C S ∅∅∅ t CBox SBox ∅∅∅Box CMask SMask ∅∅∅Mask t

n

640 74.7 47.5 61.1 1.8 73.7 53.8 63.8 67.2 47.2 57.2 1.9
768 76.7 49.1 62.9 2.0 75.5 55.5 65.5 69.8 49.0 59.4 2.3
896 77.5 49.6 63.6 2.2 76.3 56.1 66.2 71.2 50.1 60.7 2.6

1024 77.7 50.1 63.9 2.6 77.5 56.7 67.1 72.8 50.3 61.6 3.2
1152 78.5 51.0 64.8 3.1 78.4 56.5 67.5 73.6 50.6 62.1 3.9

s

640 77.2 50.6 63.9 2.5 76.3 57.1 66.7 69.6 50.7 60.2 3.0
768 77.9 51.9 64.9 3.4 77.5 58.2 67.9 71.4 52.3 61.9 4.2
896 79.1 52.7 65.9 4.3 78.5 58.6 68.6 73.1 52.8 63.0 5.3

1024 79.5 53.0 66.3 5.3 79.1 58.7 68.9 74.1 53.0 63.6 6.7
1152 79.9 53.4 66.7 6.5 79.3 59.2 69.3 75.1 53.6 64.4 8.2

m

640 78.4 53.8 66.1 4.8 77.7 60.1 68.9 71.3 54.6 63.0 5.7
768 79.8 54.7 67.3 6.9 78.7 62.0 70.4 72.9 56.5 64.7 8.3
896 80.2 55.7 68.0 9.2 79.7 61.8 70.8 74.4 56.9 65.7 11.1

1024 81.1 56.0 68.6 11.8 80.0 62.0 71.0 75.5 56.6 66.1 14.3
1152 81.4 55.9 68.7 14.4 80.0 62.4 71.2 75.8 56.9 66.4 17.4

l

640 79.7 55.4 67.6 7.9 78.4 62.0 70.2 71.6 56.8 64.2 9.4
768 80.5 56.1 68.3 11.4 79.4 63.6 71.5 73.6 58.3 66.0 13.6
896 81.3 57.4 69.4 15.4 80.2 63.4 71.8 75.1 58.6 66.9 18.3

1024 81.8 58.0 69.9 19.7 80.4 64.2 72.3 76.0 58.9 67.5 23.3
1152 82.2 57.9 70.1 24.2 80.2 64.1 72.2 75.6 58.5 67.1 28.8

x

640 80.0 55.5 67.8 12.2 78.4 62.3 70.4 71.6 56.8 64.2 14.5
768 81.0 56.6 68.8 17.8 79.5 63.1 71.3 73.9 58.7 66.3 21.2
896 82.0 58.2 70.1 24.1 80.1 63.9 72.0 74.7 59.4 67.1 28.2

1024 82.1 58.4 70.3 30.6 80.7 64.1 72.4 75.8 59.3 67.6 36.1
1152 82.3 59.2 70.8 37.6 80.9 64.1 72.5 76.4 59.2 67.8 44.1

Table 8. Complete results of oriented-object-detection and instance-segmentation experiments for the model capacities Nano (n), Small
(s), Medium (m), Large (l) and X-Large (x) and different input sizes. The mAP50-95 scores on the test set are listed for the classes Cut and
Side as well as their average (∅∅∅) along with mean inference time (t) in milliseconds. In the case of instance segmentation, scores are listed
for the Box and Mask stages separately.

mented by images from all subsets and TimberSeg showing
selected corner cases and limitations (Fig. 13) to identify
challenging scenarios and potentials for improvement. As
discussed in the main paper, especially images in low-light
conditions and trunks triggering multiple detections due to

large occlusions need further investigation during future it-
erations of the dataset.



Figure 9. Additional qualitative results on the test split of the Core
subset recorded in forests and other outdoor locations.

Figure 10. Additional qualitative results on the test splits of the
Loading and Harvesting subsets depicting realistic application
scenarios.

Figure 11. Additional qualitative results on the TimberSeg dataset
[2] demonstrating the generalization capability of our approach.

Figure 12. Additional qualitative results on the test split of the
OpenSource subset with complementary scenarios to the main data
from public sources.



Figure 13. Additional qualitative results showing limitations on
our test set and the TimberSeg dataset [2].
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