
Supplementary Materials

1 Implementation Details
All the experiments are implemented in Python 3.8.12 with Pytorch 2.0.1 on an NVIDIA GeForce RTX 4090
GPU card with 24GiB of memory. In addition, the DiffuCE framework is based on the HuggingFace libraries
with HuggingFace diffusers 0.19.3[1](Apache-2.0 license). We leverage the Adam optimizer with a learning
rate of 1 × 10−5 for the training of DBE, CDD, and CRD, while the learning rate of the discriminator in the
CRD training is set to 5 × 10−6. The training epochs of the DBE, CDD, and CRD are 600, 100, and 160,
respectively.

1.1 Pretrained Encoder & Decoder
The DiffuCE framework is derived from the Stable Diffusion framework, and its encoder and decoder are from
a pretrained variational autoencoder(VAE). The ratio of the height and width of the input image size and the
latent embedding is 8 : 1, which further accelerates the inference speed of the denoising UNet since the smaller
image can be processed faster.

In the training phase of the Domain Bridging Encoder(DBE) and Conditional Refinement Decoder(CRD),
we manually integrate a LoRA layer into the only attention kernel of the pretrained VAE. With this technique,
the GPU usage in the training is significantly reduced compared with full parameter fine-tuning.

1.2 Denoising UNet
The Conditional Diffusion Denoiser(CDD) is derived from the UNet of the Stable Diffusion framework. With
LoRA fine-tuning, the GPU usage is significantly reduced like the training of the DBE and CRD.

With cross-attention design, conditions such as bone, lucent area, and low-frequency components of wavelet
transform can be integrated into the CDD, leading to a more controllable and accurate prediction.

2 Algorithms
In this section, we display the details of the training algorithms for every part of the DiffuCE pipeline. The
training of the entire DiffuCE framework is in three stages. First, the Conditional Diffusion Denoiser(CDD) is
trained with real CT images, learning to generate high-quality medical images with given conditions, and the
training algorithm is described in Algorithm 1.

Second, the DBE is trained with pseudo-CBCT and CT pairwise dataset, learning to bridge the distribution
gap between the CBCT and CT images, and the training algorithm is described in Algorithm 2.

Third, the CRD is also trained with pseudo-CBCT, CT, and corresponding conditions, learning to decode
the denoised latent to the pixel space with guidance from the condition. The training algorithm is described in
Algorithm 3.

Lastly, the inference of DiffuCE can also be divided into three steps: (1) The DBE adds noise to the given
CBCT images and bridges it to the CT distribution. (2) The CDD gradually removes the added noise, while
preserving the details in every iteration with given constraints obtained from fcp. (3) The CRD decodes the
sample from latent space back to pixel space with given constraints to guide again. The inference algorithm is
described in Algorithm 4.
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Algorithm 1 Training algorithm of the CDD
Input: pre-trained diffusion models θdiff , encoder θenc, CT dataset D, constraints preprocess fcp, stop gradient
operator sg, learning rate η
Output: CDD θCDD.

1: Let θCDD ← θdiff .
2: while not converged do
3: Sample from CT dataset xct ∼ D
4: Produce constraints c← fcp(xct)
5: Sample noise z ← N (0, I)
6: Sample timestep t← U(0,T)
7: Encode latent embeddings ϵct ← sg(θenc(xct, z, t))
8: Compute the noise level ϵ̂← θCDD(ϵct, c)
9: θCDD ← θCDD − η∇(∥ϵ̂− z∥22)

10: end while
11: return θCDD

Algorithm 2 Training algorithm of the DBE
Input: down-sample function fdown, pre-trained encoder θenc, CT dataset D. alignment loss la, stop gradient
operator sg, learning rate η.
Output: DBE θDBE .

1: Let θDBE ← θenc.
2: while not converged do
3: Sample from CT dataset xct ∼ D
4: Produce pseudo-CBCT xcbct ← fdown(xct)
5: Encode CT latent embedding ϵct ← θenc(xct)
6: Encode CBCT latent embedding ϵcbct ← θDBE(xcbct)
7: Compute the alignment loss.
8: La ← la(sg(ϵct), ϵcbct)
9: θDBE ← θDBE − η∇La

10: end while
11: return θDBE

Algorithm 3 Training algorithm of the CRD
Input:down-sample function fdown, pre-trained decoder θdec, fixed DBE and CDD θDBE , θCDD, CT dataset
D, stop gradient operator sg, learning rate η, constraint preprocessing fcp, adversarial loss ladv , perceptual loss
lpercept, condition loss lcons
Output: CRD θCRD.

1: Let θCRD ← θdec.
2: while not converged do
3: Sample from CT dataset xct ∼ D
4: Produce constraints c← fcp(xct)
5: Produce pseudo-CBCT xcbct ← fdown(xct)
6: Get reconstructed sample.
7: xrecon ← θCRD(sg(θCDD(θDBE(xcbct), c)), c)
8: Compute the loss
9: Ladv ← ladv(xrecon, xct)

10: Lpercept ← lpercept(xrecon, xct)
11: Lcond ← lcond(xrecon, c)
12: L ← Ladv + Lpercept + Lcond

13: θCRD ← θCRD − η∇L
14: end while
15: return θCRD
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Algorithm 4 Inference algorithm of the DiffuCE framework
Input:fixed DBE, CDD, and CRD θDBE , θCDD, θCRD, CBCT image x, constraint preprocessing fcp, strength
s
Output: reconstructed sample y

1: Produce constraints c← fcp(x)
2: Get bridged embedding x̂← θDBE(x)
3: for k = s to 1 do
4: Denoise x̂← θCDD(x̂, c, k)
5: end for
6: Reconstruct to pixel space y ← θCRD(x̂, c)
7: return y

3 Pseudo-CBCT
The pseudo-CBCT is an ideal low-quality sample to a high-quality CT image. To train the model in a supervised
manner, the pairwise dataset is essential, which is almost impossible to obtain in a practical clinical situation.
The clinicians are either unable to obtain high-quality images or do not need to obtain low-quality images since
high-quality images are always available. To produce pairwise training data, we employ a method inspired by
”A streak artifact reduction algorithm in sparse-view CT using a self-supervised neural representation.” In this
section, we initially introduce the sinogram and its relationship with the CT image. Subsequently, we explain
the practical algorithm used for pseudo-CBCT production. Finally, we showcase some paired data from our
training dataset.

3.1 Sinogram
A typical medical image scanning involves observations from various angles, and the raw data representation
from such scans is termed a sinogram. The sinogram can be reconstructed into the image domain using filter
backprojection (FBP), a technique that combines signal processing, filtering, and linear transformation. FBP
enables the reconstruction of a full-view sinogram, incorporating enriched scanning information from multiple
angles with high quality. However, artifacts may emerge during the FBP process when dealing with down-
sampled sinograms, which contain less information from limited angles. This sparsity in data is leveraged in
our artifact generation algorithm.

3.2 Artifact Generation Algorithm
The idea beyond the artifact generation algorithm(AGA) is to manually produce the sparsity from the full-view
sinogram. Initially, we have the original CT image xfull sampled from the CT image dataset Dfull, and the
sinogram of xfull, denoted as sfull, can be obtained by performing an inverse FBP process FBP−1. The
sparsity of sfull can be easily done by filling zeros to some columns, and a sparse version of data can be
obtained, denoted as ssparse. The selection of columns can be determined or random, depending on whether
the actual scanning pattern is known or not. In our case, the scanning patterns from the CT imaging machines
are unknown, thus we randomly drop 40% of data to create the sparsity. Practically, we use a maskMdrop to
perform the dropping operation. Finally, we use FBP to transform the data from the sinogram domain back to
the image domain, and the reconstructed image is denoted as xsparse.

xfull ∼ Dfull, (1)

sfull = FBP−1(xfull), (2)
ssparse =Mdrop × sfull, (3)
xsparse = FBP (ssparse) (4)

See Figure 6 for the pipeline overview, and Figure 7 for some visual demonstrations.
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Figure 6: AGA pipeline. The fundamental concept behind the Artifact Generation Algorithm (AGA) is
to intentionally introduce sparsity by selectively dropping data in the sinogram domain. The transformation
between the image and sinogram domain is facilitated by Filter BackProjection (FBP). We employ a mask to
govern the dropping ratio and location information, enabling the creation of a down-sampled sinogram. This
down-sampled sinogram is obtained by multiplying the full-view sinogram with the mask. Details of the AGA
can be found in Supplementary Materials Section 1.2.

Figure 7: Dataset Demostration. We have chosen 6 pairs of training data from our dataset for demonstration
purposes. In each pair, the down-sampled image (pseudo-CBCT) is presented on the left-hand side, while the
original full-view CT image is displayed on the right-hand side. Notably, streak artifacts are observable in the
pseudo-CBCT, while the fundamental structural features are consistent with their corresponding ground truth.
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Model sharpness↑ contour↑ preserv.↑ bone↑ muscle↑ heart↑ lung↑ recon.↑ satisfy↑

GAN 0.70 0.70 0.82 0.86 0.66 0.62 0.72 0.75 0.61
RegGAN 5.48 5.42 6.13 6.34 5.30 5.13 3.31 5.79 4.90
CycleGAN 6.33 6.05 6.72 7.12 6.14 5.54 4.01 6.50 5.69
CDGAN 6.27 5.85 6.72 6.63 5.87 5.55 3.98 6.22 5.63
SD.v2 5.62 5.21 3.81 3.03 4.22 4.34 6.63 3.88 4.49
DiffuCE 6.54 7.13 6.45 7.36 6.16 7.00 5.17 6.57 7.07

Table 4: Questionnaire Results. The scores have been averaged across samples from 10 patients. The first
and the second place on each metric are marked with bold letters and underlined, respectively. Noted that the
”preserv.” and ”recon.” represent ”tissue preservation” and ”reconstruction”, respectively.

Figure 8: Questionnaire Example. This figure illustrates an example of the questionnaire utilized for experts’
assessment. For each set of CT images, we present one real CBCT image alongside 6 reconstructed images
from various deep learning-based approaches, arranged in random order. Experts are instructed to rank the
reconstructed images using given metrics on a scale from 0 to 10. In this specific example, the order of recon-
structed images is as follows: (a) DiffuCE, (b) CycleGAN, (c) CycleDeblurGAN, (d) GAN, (e) RegGAN, (f)
Stable Diffusion v2.

4 Experts’ Assessment
To assess the performance of DiffuCE from a clinical perspective, we engage five radiologists from the local
medical center in our assessment. The assessment consists of CT images from 10 patients and their correspond-
ing reconstructed images from different models. The assessment result is provided in Table 4, and a visual
example is shown in figure 8.

5 Ablation Study
Our framework, DiffuCE, consists of three parts: Domain Bridging Encoder (DBE), Conditional Diffusion
Denoiser (CDD), and Conditional Refinement Decoder (CRD). In the ablation study, we remove one component
at a time and compare the outputs across every combination. In this section, we provide visual examples to
further explain the findings across different combinations in the ablation study.

In the DiffuCE framework, the DBE plays a crucial role in bridging latent representations from CBCT into
the CT domain. If the DBE is excluded, CBCT latents are directly fed into the CDD. However, since these
latents have a distinct distribution in the latent space, this direct feed can result in inaccurate outputs. An
example is provided in Figure 9.

The role of CDD is to systematically eliminate the noise introduced in the latent space by the DBE while
retaining details through the assistance of conditional guidance modules. If the CDD is omitted, the noise
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Figure 9: Ablation: w/o DBE. In this figure, we demonstrate that DiffuCE can reconstruct samples with
enhanced contrast between different tissues, aided by the DBE. The areas framed in yellow and red are magnified
in the second and third rows, respectively. In the second row, the DiffuCE output preserves finer details, whereas
the output without the DBE tends to oversmooth the details. A similar outcome is observed in the third row.

within the latent space could severely distort the boundaries of soft tissues. Without the guidance information,
reconstruction becomes challenging, leading to highly distorted results. An example is provided in Figure 10.

In the DiffuCE framework, the CRD plays a crucial role in guiding the transformation from latent space to
pixel space. If the CRD is omitted, the structural details distorted by the CDD during the denoising process
might propagate into pixel space, resulting in performance drawbacks. Case studies highlight the vital role of
CRD in controlling the output at the pixel level. An example is provided in Figure 11.

6 Discussion
Why does DiffuCE need more conditions to optimize the performance?

Different from conventional denoising networks, the DiffuCE is more like generating high-quality images
that very similar to the input low quality images.

In the natural image domain, the variation of the generative model can be seen as creativity, bringing more
diversity to the generated content. With more control, such as more conditions and less timesteps, the diversity
of diffusion models is suppressed, and the model tend to generate samples that are almost the same.

In medical image enhancement, the ideal solution is the one that only removes the noise pattern and leaves
the rest of the contents unchanged. In other words, it’s a generation task aiming to generate a high-quality ver-
sion of the original input image, and the diversity during the generation should be as low as possible. Adopting
the idea of the natural image generation, this ideal solution should be achieved with enough conditions that
makes the generation process become almost deterministic.

If the generation process becomes deterministic, the generative model can be seen as a translator between
two different image distributions, which is an ideal denoiser in a medical image enhancement task.

Why does the bridging module in the DBE work with the noisy latent?
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Figure 10: Ablation: w/o CDD. In this figure, we illustrate how DiffuCE can mitigate artifacts while preserving
structural features with the assistance of CDD. The areas framed in yellow and red are magnified in the second
and third rows, respectively. In the second row, the boundaries of soft tissue in the DiffuCE output are relatively
well-defined, while the soft tissue becomes blurred and less realistic in the output without CDD. A similar
outcome is observed in the third row.
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Figure 11: Ablation: w/o CRD. In this figure, we illustrate how CRD refines the output from CDD based
on the provided conditions. The areas framed in yellow and red are magnified in the second and third rows,
respectively. In the second row, the spine in the DiffuCE output is refined to a more realistic shape with the
inclusion of CRD, whereas the spine in the output without CRD appears distorted. In the third row, the body
contour is significantly distorted in the output without CRD, while the body contour in the output with CRD
closely resembles the ground truth.
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Figure 12: Pseudo-CBCT case study. Some reconstructed samples from DiffuCE.
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Figure 13: Real CBCT case study. In this figure, we showcase the capability of DiffuCE on real CBCT images.
Each CBCT image exhibits noticeable artifacts, and DiffuCE effectively reduces these artifacts while preserving
the structural features. However, it is noteworthy that some crucial features in vital organs, such as the heart,
appear distorted or are missing. Addressing these specific challenges constitutes our primary focus for future
work.
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The input CBCT image is projected to CT distribution in the latent space by the DBE with added noise, and
the CDD gradually removes the noise. The reason why the projection is performed on the noisy latent is because
of the difference between the CBCT and CT images being partially compensated by the noise. Consider the
following equation:

InoisyCT = α× ICT + β × ϵ, (5)
InoisyCBCT = α× ICBCT + β × ϵ, (6)
lim
β→∞

InoisyCT = lim
β→∞

InoisyCBCT (7)

(8)

, where InoisyCT , InoisyCBCT , ICT , ICBCT , ϵ refer to noisy CT, noisy CBCT, clean CT, clean CBCT image,
and the noise. As the β being larger, the magnitude of added noise becomes stronger. Eventually, both InoisyCT

and InoisyCBCT will become noise sampled from the same distribution if the β becomes infinitely large.
However, it’s a trade-off between bridging distribution differences and preserving information. Thus we

decide to train a bridging unit to perform the projection with the help of adding noise that shortens the distance
between distributions.

Why does the performance of DiffuCE with different CRD weights are so close?
Since the output of the CRD should be high-quality medical images with an ideal appearance of clinical

experts, the CRD is supposed to be optimized by the objective of the corresponding task. However, results
in Table 2 show that the weights optimized by different objectives result in similar performance. It might
indicate that the optimal distribution of different CBCT enhancement tasks could be very close which is a
reasonable assumption since high-quality CT images share features such as high contrast, clear border, and no
noise pattern. Results in Table 1 show the diffusion-based fine-tuned methods, SD.v2 and Ours, have the best
FID performance, indicating the competitive ability to capture the CT image distribution. It might reveal the
opportunity to build a more unified CBCT image enhancement network based on the pre-trained foundation
diffusion model framework. We will leave this as the future work.
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