Just Shift It: Test-Time Prototype Shifting for Zero-Shot Generalization with
Vision-Language Models

Supplementary Material

This document provides more details of our approach
and additional experimental results, organized as follows:

* § A Implementation Details.

* § B Additional Quantitative Results with Different
Random Seeds.

§ C Additional Ablation Studies.

* § D Comparison to Training-Free Methods.

* § E Research Impact and Limitations.

A. Implementation Details of TPS

Algorithm 2 shows more detailed pseudocode in
PyTorch-like style for Test-Time Prototype Shifting over an
entire dataset. We will release the models and source code
to ensure reproducibility.

B. Main Results With More Random Seeds

In Sec B.1 and B.2, we run Test-Time Prototype Shifting
(TPS) over 3 random seeds on both the natural distribution
shifts (Table 1) and cross-dataset generalization (Table 3),
respectively. The randomness comes from the image aug-
mentation in creating a diverse minibatch for the entropy
minimization objective.

B.1. Natural Distribution Shifts

From Table 7, we observe that our conclusion from
Sec 4.1.1 still holds. That is, our method outperforms SoTA
TPT [47] by > 3.4% on average. We also observe that
augmenting the TPT-tuned class prototypes with more ad-
vanced off-the-shelf prototypes only boosts performance by
a mere 0.5% on average over vanilla TPT, demonstrating
TPT’s limitation in maximally leveraging these advanced
prototypes.

B.2. Cross-Dataset Generalization

From Table 8, we see that our conclusion from Sec 4.1.2
remains valid. Specifically, TPS outperforms TPT [47] by
> 2% on average. Similarly to Sec B.1, we observe that tak-
ing the mean of the TPT-tuned and advanced off-the-shelf
prototypes increases performance by only 0.5% on aver-
age over TPT, demonstrating TPT’s inflexibility in utilizing
these more robust class representations.

B.3. Context-Dependent Visual Reasoning

From Table 9, we see that our conclusion from Sec 4.2
remains valid. Specifically, TPS outperforms TPT [47] by
> 0.5% on average.

C. Full Ablations

In Sec C.1, we report full ablations on TPS on the effec-
tiveness of feature-space shift on various prototypes. These
results are comparable to those reported in Sec 4.4. In
Sec C.2, we include additional ablations to observe the ef-
fect of learning a class-specific shift over a universal shift
for all classes. In Sec C.3, we explore variants on prototype
generation using the class-agnostic CLIP ImageNet con-
text prompt templates [42] and the class-specific descrip-
tors generated using GPT-4 [38]. All these ablations are run
over 3 random seeds.

C.1. Effect of Shift on Different Prototypes

Full comparisons between zero-shot and feature-shifted
performance on all natural distribution shift and cross-
domain generalization benchmark datasets over 3 random
seeds are in Tables 11 and 12, respectively. We demon-
strate that our conclusion from Sec 4.4.1 stills holds — that
learning a small perturbation in the feature space results in
performance gains of > 4% and up to 1% on average across
natural distribution shift and cross-domain generalization
tasks regardless of what prototypes are used.

C.2. Effect of Per-Class vs. Shared Shift

Test-time prompt tuning methods involve tuning a
prompt that is shared across all classes in a dataset. Given
that the tuneable prompt tokens form a portion of the
text encoder input, these full prompts are then mapped to
the embedding space with the encoder’s learned complex
feature-space mapping. This results in non-linear perturba-
tions from the original class prototypes. However, for our
method, tuning shift parameters that are shared for all class
prototypes in the feature-space means that the relative dis-
tance between class prototypes will remain constant before
and after test-time shift tuning, limiting the expressive capa-
bility of the learned shift. Rather, we believe that each class
prototype should be modulated by slightly different magni-
tudes and/or directions to provide more degrees of freedom
in capturing the class-level distribution shifts in addition to
the dataset-level shifts present in a domain gap.

Table 13 shows that, on average, learning a per-class shift
increases performance by > 1.2% regardless of which pro-
totypes are used. Moreover, we see that Table 14 demon-
strates that, on average, learning a per-class shift increases
performance by around 0.5% on average over different pro-
totype settings. This demonstrates that learning per-class



Algorithm 2 Test-Time Prototype Shifting Pseudocode in PyTorch-like style

1 # Define frozen parameters

> image_encoder = CLIPImageEncoder ()

3 prototypes = load_class_prototypes ()
4

s predictions = []

¢ for img, label in data_loader:

embed_dim), requires_grad=True)

7 # Test-Time Shifting

8 shift_params = nn.Parameter (torch.zeros (num_classes,
9 aug_imgs = [aug(img) for i in range (batch_size - 1)]
10 imgs = torch.stack([img] + aug_imgs, dim=0)

1 image_features = image_encoder (imgs)

13 text_features = prototypes + shift_params

14 text_features = F.normalize (text_features, dim=-1)

15

16 logits = (logit_scale x text_features @ image_features.T)
17

18 # Confidence selection

19 entropies = compute_batch_entropies (logits)

20 top_k_idx = torch.argsort (batch_entropy, descending=False) [:k]
21

2 loss = compute_average_entropy (logits[top_k_idx])

23 optimizer.zero_grad()

24 loss.backward()

25 optimizer.step ()

26

7 # Test-Time Inference

28 new_prototypes = prototypes + shift_params

29 new_prototypes = F.normalize (new_prototypes, dim=-1)

30

31 logits = (logit_scale x new_prototypes @ image_features[0].unsqueeze(0).T)
» pred = torch.argmax (logits)

33

34 predictions.append (pred)

36 return predictions

Method ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet- Average OOD Average
Sketch
Test-Time Adaptation Baselines
TPT [47] 68.96 (£.03) 54.47 (£.26) 63.46 (£.07) 77.10 (£.04) 47.93 (£.03) 62.38 (£.05) 60.74 (£.06)
TPT + (templates + descriptors)* 69.51 (£.05) 54.94 (£.17) 63.86 (£.11) 71.57 (£.11) 48.38 (+.04) 62.85 (£.03) 61.19 (£.04)
Ours ‘ 71.43 (+.06) 60.78 (£.21) 65.00 (+.09) 80.06 (+.13) 50.97 (+.09) 65.65 (£.06) 64.20 (+.08)

Table 7. Acc@1 of zero-shot image classification with CLIP-ViT-B/16 backbone on ImageNet and its OOD variants over 3 random seeds.

Best performances are in bold.

shifts allows the model to capture both dataset-level and
class-level distribution shifts in a domain gap.

C.3. Prototype Variants

We explore different methods for creating class proto-
types. Specifically, we experiment with different forms of
aggregating the text encoded with the 80 ImageNet context

prompts from CLIP [42] and our LLM-generated descrip-
tors. The CLIP ImageNet templates are class-agnostic and
add image-level characteristics whereas the descriptors are
class-specific and add class-level semantic information.

Tables 15 and 16 compare three variants of pooling these
CLIP templated embeddings and descriptor embeddings to
obtain a single class prototype. Similarly to the conclusion



Method ‘ Flower102 DTD Pets Cars

UCF101 CalTech101 Food101 SUN397 Aircraft

EuroSAT Average

TPT [47] 68.79 (+.1) 4679 (+.1)  87.09 (+.1)  66.38 (+.2)

67.86 (+.1) 9413 (+.1)  84.67 (+.1) 6541 (£.1) 2344 (+£3) 4278 (+£.3) 6473 (+.1)

TPT + (templates + descriptors)* | 69.67 (+.11) 47.56 (+.55) 87.88 (£.02) 6691 (£.17) 6835 (+.21) 94.17 (+.13) 84.89 (+.07) 66.23 (+.12) 23.55 (+.31) 43.12 (+.18) 65.23 (+.06)

Ours | 7147 (£.12) 5100 (£.47) 87.45(£.09) 68.99 (£.10) 7098 (£.24) 94.90 (+.16) 85.15(+£.08) 68.85 (+.16) 25.82(£.45) 44.61 (+.11) 6692 (+.04)

Table 8. Acc@1 of zero-shot image classification with CLIP-ViT-B/16 backbone on cross-dataset generalization over 3 random seeds. Best

performances are in bold.

unseen act., Average

Method seen act., unseen act., seen act.,
unseen obj.,

seen obj., seen obj., unseen obj.,

TPT (reprod.) | 65.81 (£.12) 69.15 (£.10) 65.69 (£.01) 66.87 (£.03)  66.88 (£.04)
Ours (Shift) 66.67 (£0.68)  70.31 (£1.67) 66.00 (£1.38) 66.67 (£0.40)  67.41 (£.98)

Table 9. Acc on the Bongard-HOI benchmark with CLIP-ResNet-
50 backbone over 3 random seeds. Best performances are in bold.

Method ImageNet ImageNet-R ImageNet. Cross-Dataset  Needs Support
Sketch Average Set

SuS-X-SD-C[51] 61.65 61.69 35.88 60.49 v

SuS-X-LC-P [51] 61.80 61.62 3625 60.64 v

CALIP[12] 60.57 - - 5934 X

Ours (Shift + SuS-X descriptors) 63.52 63.66 37.66 61.47 X

Table 10. Acc@1 of zero-shot image classification with CLIP-
ResNet-50 backbone on ImageNet and its OOD variants. Best
performances are in bold.

of Sec 4.4.1, we observe that in general, the gains observed
using more advanced prototypes in the zero-shot setting al-
most directly translate to the test-time adaptation setting
with shifting. In Sec 4, we present the results of our method
using prototypes that are a micro average of the CLIP tem-
plates and LLM-generated descriptors.

D. Comparison to Training-Free Methods

In a similar spirit to zero-shot test-time adaptation,
training-free methods perform domain adaptation with-
out tuning any parameters. We compare our method to
state-of-the-art training-free methods in Table 10. We
show that our method, TPS, when using the same GPT-
3-generated [2] text prompts from the official SuS-X [51]
code, out-performs both CALIP [12] and SuS-X [51] with-
out any additional image support set constructed with Stable
Diffusion [44] or LAION-5B [46]. This demonstrates how
a simple feature-space shift is more effective than complex
training-free methods. For fair comparison, we compare
TPS with SuS-X results with fixed hyperparameter settings
as ours are not tuned per dataset and use the same CLIP-
ResNet50 backbone.

E. Research Impact and Limitations

We propose TPS, a framework that can be used to easily
and effectively improve zero-shot generalization of VLMs.
Given the large-scale training of foundation VLMs, we be-
lieve it is important to understand different ways to bet-
ter leverage the resulting rich multi-modal contrastive rep-
resentation spaces in parameter- and runtime-constrained

settings. We propose to learn a slight perturbation to the
class prototypes to maintain the overall representation qual-
ity of the pre-trained embedding space while learning a bet-
ter alignment to the OOD target dataset. We hope that this
framework can inspire future work to explore other tasks
where learning directly in the feature space can be an effi-
cient alternative to more complex tuning approaches.

Our work builds on the CLIP [42] representation space
and uses GPT-4 [38] to generate class descriptors to create
more advanced class prototypes. Thus, our model has the
potential to magnify the biases of both these models. Fu-
ture studies may explore how to best leverage these models’
capabilities without promoting its biases.



Prompt Type \ Setting \ ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch Average OOD Average
Zero-Shot 66.74 47.79 60.89 73.99 46.12 59.10 57.20

Vanilla + shift 68.81 (+.03) 58.11 (+.16) 63.51 (+.17) 76.98 (+.05) 48.11 (+.09) 63.10 (+.08) 61.68 (+.09)
| A \ +2.07 +10.32 +2.62 +2.99 +1.99 +4.00 +4.48
Zero-Shot 71.51 49.71 64.20 7521 47.99 61.72 59.28

CoOp [60] + shift 73.76 (+.04) 60.43 (+.12) 66.84 (+.10) 77.39 (+.05) 49.08 (+.06) 65.50 (+.02) 63.44 (£.03)
| A \ +2.25 +10.72 +2.64 +2.18 +1.09 +3.78 +4.16
Zero-Shot 68.35 49.95 61.97 77.59 4821 61.21 59.43

CLIP templates + shift 70.39 (+.06) 60.47 (+.07) 64.66 (£.04) 80.70 (£.04) 5038 (+.14) 65.32 (+.03) 64.05 (+.02)
| A \ +2.04 +10.52 +2.69 +3.11 +2.17 +4.11 +4.62
Zero-Shot 68.52 4891 61.78 74.81 47.68 60.34 58.29

Descriptors + shift 70.38 (+.03) 59.21 (+.09) 63.80 (+.07) 7749 (£.12) 49.57 (+.06) 64.09 (+.02) 62.52 (+.03)
| A \ +1.86 +10.30 +2.02 +2.68 +1.89 +3.75 +4.23
CLIP templates Zero-Shot 69.54 50.51 63.01 77.18 48.84 61.82 59.88

+ Descriptors + shift 71.43 (£.06) 60.78 (+.21) 65.00 (£.09) 80.06 (£.13) 50.97 (£.09) 65.65 (+.06) 64.20 (+.08)
| A | +1.89 +10.27 +1.99 +2.88 +2.13 +3.83 +4.32

Table 11. Acc@1 for zero-shot and with feature-space shift with features initialized using different prototype generation techniques on
ImageNet and its out-of-distribution variants. Results are over 3 random seeds.

Prompt Type ‘ Setting ‘ Flower102 DTD Pets Cars UCF101 CalTech101 Food101 SUN397 Aircraft EuroSAT Average
Zero-Shot 67.28 44.44 87.98 65.24 65.08 92.98 83.80 62.55 23.70 41.42 63.45
Vanilla +shift | 67.75 (£.10)  45.69 (£.10) 87.57 (+£.10) 67.60 (£.23) 66.79 (£.21) 93.79 (+.08) 84.62 (+.03) 6458 (+.03) 24.75 (+.39) 41.35 (+.03) 64.45 (+.04)
‘ A ‘ +0.47 +1.25 -0.41 +2.36 +1.71 +0.81 +0.82 +2.03 +1.05 -0.07 +1.00
Zero-Shot 65.57 44.86 88.25 66.19 67.46 93.67 83.77 65.78 23.64 47.74 64.69
CLIP templates | +shift | 66.41 (£.05) 45.61 (£.19) 87.99 (+.10) 68.66 (+.31) 68.02 (+.11) 93.85 (+.14) 84.54 (£.08) 67.19 (£.05) 24.66 (+£.13) 48.28 (+£.20) 65.52 (£.05)
‘ A ‘ +0.84 +0.75 -0.26 +2.47 +0.56 +0.18 +0.77 +1.41 +1.02 +0.54 +0.83
Zero-Shot 71.13 5272 86.75 65.15 70.53 94.08 84.12 67.10 25.26 4331 66.02
Descriptors +shift | 71.69 (£.15) 53.80 (+.21) 87.82(£.19) 67.00 (+.14) 71.18 (£.15) 94.56 (+£.08) 84.78 (£.05) 68.25 (+.18) 26.27 (+.09) 42.11 (£.18) 66.75 (+.06)
‘ A ‘ +0.56 +1.08 +1.07 +1.85 +0.65 +0.48 +0.66 +1.15 +1.01 -1.20 +0.73
CLIP templates | Zero-Shot 70.52 49.94 87.22 66.48 70.24 94.12 84.47 67.55 24.69 44.14 65.94
+ Descriptors +shift | 71.47 (£.12) 51.00 (+£.47) 87.45(£.09) 68.99 (+.10) 70.98 (+.24) 94.90 (+.16) 85.15 (+.08) 68.85 (+.16) 2582 (4+.45) 44.61 (£.11) 66.92 (+.04)
| A | +095 +1.06 +0.23 +2.51 +0.74 +0.78 +0.68 +1.30 +1.13 +0.47 +0.98

Table 12. Acc@]1 for zero-shot and with feature-space shift with features initialized using different prototype generation techniques on
cross-domain generalization datasets. Results are over 3 random seeds.

Method ‘ ImageNet ImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch Average OOD Average
Shared 71.23 (+.02) 56.57 (+.19) 64.98 (+.03) 79.31 (+.03) 50.80 (£.06) 64.58 (+.04) 62.92 (+.06)
Per class 71.43 (+.06) 60.78 (+.21) 65.00 (+.09) 80.06 (+.13) 50.97 (+.09) 65.65 (+.06) 64.20 (+.08)

Table 13. Acc@1 for learning a shared vs. per-class shift on top of different prototypes over 3 random seeds. Best performances are in
bold.

Method ‘ Flower102 DTD Pets Cars UCF101 CalTech101 Food101 SUN397 Aircraft EuroSAT Average

Shared | 71.36 (£.12) 5049 (+.12) 87.46 (£.12) 67.33 (£.06) 7077 (+£.12) 9435 (+.06) 8482 (£.01) 68.12 (£.04) 2527 (£.02) 44.67 (£.06) 66.47 (£.03)
Per-class | 7147 (+.12) 5100 (+£.47) 8745 (+.09) 6899 (+£.10) 7098 (+£.24) 9490 (+.16) 85.15 (£.08) 68.85 (£.16) 25.82 (£.45) 44.61 (£.11) 66.92 (+.04)

Table 14. Acc@1 for learning a shared vs. per-class shift on top of different prototypes over 3 random seeds. Best performances are in
bold.

Prompt Type(s) Pooling Method ImageNet TImageNet-A ImageNet-V2 ImageNet-R ImageNet-Sketch Average OOD Average
Zero-Shot

Vanilla prompt N/A 66.74 41.79 60.89 73.99 46.12 59.10 57.20

CLIP templates + Descriptors Macro 68.73 50.32 62.31 77.67 48.56 61.52 59.72

CLIP templates + Descriptors Micro 69.54 50.51 63.01 77.18 48.84 61.82 59.88

CLIP templates x Descriptors Macro 69.03 50.73 62.22 76.91 49.07 61.59 59.73
With Shift

Vanilla prompt N/A 68.81 (£.03) 58.11 (£.16) 63.51 (£.17) 76.98 (£.05) 48.11 (4.09) 63.10 (4.08) 61.68 (+.09)

CLIP templates + Descriptors Macro 70.75 (£.08) 60.86 (+.09) 64.95 (£.11) 80.84 (4.03) 50.70 (£.11) 65.62 (£.02) 64.34 (+.02)

CLIP templates + Descriptors Micro 71.43 (+.06) 60.78 (£.21) 65.00 (+.09) 80.06 (£.13) 50.97 (4+.09) 65.65 (4.06) 64.20 (£.08)

CLIP templates x Descriptors Macro 70.82 (£+.02) 60.42 (£.06) 64.50 (£.05) 79.53 (+.09) 51.13 (+.02) 65.28 (+.01) 63.89 (£+.02)

Table 15. Acc@1 for different variants of prototype generation, i.e. ways of combining templates and descriptors, on natural distribution
shifts, over 3 random seeds. Best performances for each setting are in bold.



Prompt Type(s) Pooling Method Flower102 DTD Pets Cars UCF101 CalTech101 Food101 SUN397 Aircraft EuroSAT Average

Zero-Shot
Vanilla prompt N/A 67.28 44.44 87.98 65.24 65.08 92.98 83.80 62.55 23.70 4142 63.45
CLIP templates + Descriptors Macro 66.91 45.86 88.33 66.46 68.12 93.83 83.97 66.34 24.03 46.62 65.05
CLIP templates + Descriptors Micro 7052 49.94 87.22 66.48 70.24 94.12 84.47 67.55 24.69 44.14 65.94
CLIP templates x Descriptors Macro 72.03 50.83 86.21 66.12 70.90 94.16 83.73 67.98 25.53 47.19 66.47
With Shift
Vanilla prompt N/A 67.75 (+.10)  45.69 (£.10) 87.57 (+£.10) 67.60 (+.23) 66.79 (£.21) 9379 (£.08) 84.62 (£.03) 64.58 (£.03) 2475 (+.39) 41.35(£.03) 6445 (+.04)
CLIP templates + Descriptors Macro 67.52 (+.27)  46.43 (£.28) 88.00 (+£.13) 69.04 (+.16) 68.67 (£.18) 94.16 (+.18) 84.77 (£.04) 67.70 (£.08) 24.79 (+£.30) 47.09 (£.19)  65.82 (+.06)
CLIP templates + Descriptors Micro 7147 (+£.12) 5100 (£.47) 8745 (£.09) 68.99 (+.10) 70.98 (£.24) 9490 (+.16) 85.15(+.08) 68.85 (+£.16) 2582 (+.45) 44.61 (£.11) 66.92 (+.04)
CLIP templates x Descriptors Macro 7253 (+.12)  52.56 (£.09) 86.15 (£.05) 68.89 (£.07) 7144 (£.20) 9443 (+.06) 84.44 (£.08) 69.04 (£.02) 2651 (+.26) 45.65 (£.15) 67.16 (+.03)

Table 16. Acc@1 for different variants of knowledge injection, i.e. ways of combining templates and descriptors, over 3 random seeds on
cross-dataset generalization tasks. Best performances in each setting are in bold.
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