
Advancing Weight and Channel Sparsification with Enhanced Saliency
Appendix

1. Difference from DST Methods (e.g. RigL)
Dynamic sparse training(DST) methods [2, 6, 13, 14, 19,

27, 28] like RigL perform growing with single mini-batch
of data B by ranking sparse gradients over ΘP :

∂

∂ΘP

|B|∑
i=1

ℓ(f(ΘK ∪ΘP ;x
i), yi)|ΘP=0

this greedy technique only cares effectiveness of growing
for immediate next gradient descent step. In contrast,
since our importance criterion is consistent in both Prune
and Grow, combining our Reactivate & Explore and
Grow stages, our growing criterion could be considered
as leveraging both “prior" importance information and
performing “posterior" correction and adjustment based on
newly selected ΘK in the current IEE update step. For
example with magnitude criterion and Q = 1, criterion of
IEE can be reformulated as:

Prior(|ΘP |) +
∂

∂ΘP

|B|∑
i=1

ℓ(f(ΘK ∪ΘP ;x
i), yi)

, which considers importance from prior weights of ΘP and
also its adjusted weights in the Reactivate & Explore stage
based on a new ΘK selected in the current IEE step.

This offers another perspective why our method could
effectively reduce greediness in exploring new sparse
architectures than others. Quantitative comparisons
between our growing and the previous are also provided in
Sec.4.4 of the main paper.

2. Ampere Pruning Results
With the introduction of the NVIDIA Ampere GPU,

researchers in the community began to consider leveraging
ampere sparsity for acceleration and compression. With N :
M sparsity, we sparsify N neurons out of M contiguous
neurons. With a 2 : 4 ampere sparsity, the total number
of parameters in the network will be halved, but this will
be slightly more structured than a non-uniformly sparsified
50% sparsity network and thus enjoy acceleration and
computation saving. The proposed scheme of IEE can also

METHOD TOP-1 ACC(%)↑ N:M TRAIN FLOPS(×e18)↓
ASP [18] 76.8 2 : 4 ×1.61
STE [30] 76.4 2 : 4 ×0.83
SR-STE [30] 77.0 2 : 4 ×0.83
SRIGL [11] 76.6 2 : 4 ×0.83
OURS 77.5 2 : 4 ×0.83

Table 1. ImageNet1K N:M sparsity results with ResNet50. IEE
surpasses strong latest specialized ampere pruning methods in
Top-1 with the same training FLOPs needed.

be instantiated in ampere pruning scenario. In Table 1,
we compare IEE with three strong latest specialized(i.e.
designed only for) ampere pruning methods [11, 18, 30]
and found that IEE beats them in Top-1 by a margin with
the same 2 : 4 sparsity and training FLOPs needed. For
example, compared with SR-STE [30], IEE improves the
Top-1 by 0.5 with same 2 : 4 sparsity and ×0.83 training
cost. Compared with the latest SRigL [11], we surpass
its performance by almost 1 point in Top-1 (77.5 v.s.
76.6). These results again validate the generalizability of
our proposed IEE scheme in ampere sparsity.

3. Training FLOPs Computation
In tables presented in the paper, we demonstrate the

training cost of IEE as well as other methods. FLOPs
needed for a single forward pass inference of sparse model
is computed by counting the total number of multiplications
and additions. However, during training, the FLOPs
computation would be slightly different due to different
usage of the back-propagation gradients. In summary,
training a neural network consists of 2 main steps which
are forward pass and the backward pass. During the
forward pass, we calculate the loss of the given batch of
data using the current set of model parameters. Activations
of each layer are stored in memory for the following
backward pass. During the backward pass, we use the
loss value as the initial error signal and back-propagate the
error signal to calculate the gradients of parameters. We
calculate respectively the gradient of the activations of the
previous layer and the gradient of its parameters. Roughly,
the FLOPs needed for backward pass will be twice the
FLOPs needed for forward pass. Suppose a given dense
architecture has forward pass FLOPs represented as ζD and
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its pruned or sparsified model has FLOPs ζP . Training a
sample with dense model can be expressed as 3 · ζD.
IEE Each IEE step consists of three training stages,
namely: Importance Estimation, Accuracy Improvement,
and Reactivate & Explore. For each Importance Estimation
and Accuracy Improvement, we need 3 × ζP FLOPs for
both sparse forward and backward pass. For Reactivate &
Explore, since we are training with temporarily reactivated
ΘP , we need 2× ζP + ζD FLOPs to take care of the dense
forward pass. We still use sparse gradients for updating due
to the frozen ΘK . After the entire IEE update period, the
FLOPs needed would simply be 3 × ζP . Since the update
period ends at 3/4 of the entire training epochs, the average
training cost can be calculated as:

3

4
· (H + J) · 3 · ζP +Q · (2 · ζP + ζD)

H + J +Q
+

1

4
· 3 · ζP

With H = J = Q, the cost would be:

11 · ζP + ζD
4

This would be slightly higher than completely training
a sparse model from scratch which is 3 · ζP but still
substantially lower than dense model training cost (3 · ζD).
Also notice that, according to our above description of
IEE with structured sparsity, we follow the exponential
scheduler of HALP [25], and the update period ends much
earlier than 3/4 of the total training epochs. The update
with IEE for latency-constrained structured sparsity will
instead end at the 5th epoch. The average training cost of
IEE will also be much lower. With 130 training epochs in
total, according to the calculation we provide above, it will
instead be:
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130
· (H + J) · 3 · ζP +Q · (2 · ζP + ζD)

H + J +Q
+

125

130
· 3 · ζP

With H = J = Q, the cost would approximately be:

388.3 · ζP + 1.7 · ζD
130

SOFT MASKING Now for the family of soft masking
methods like SNFS [4], DPF [12], and DCIL [9], training
cost vary based on different methods. Since these methods
typically maintain dense gradients during backpropagation,
training cost would usually be noticeably higher than
typical sparse training approaches. For SNFS [4], the total
number of training FLOPs scales with 2 · ζP + ζD. For
DCIL [9], the work requires two forward and backward
passes each time to measure two sets of gradients(one
with dense weight and one with sparse weight) for weights
update, and the total number of training FLOPs scales with
5 · ζD + ζP , which is nearly doubled dense model training

cost (6 · ζD).
ZERO-SHOT PRUNING For the family of static sparse
training or zero-shot pruning, the cost can be expressed as
3 · ζP for both sparse forward and backward pass.
PRUNING FROM PRETRAINED Most of the pruning from
pretrained methods nowadays employed iterative pruning.
For simplicity here, we estimate a very loose theoretical
lowerbound assuming one-shot pruning and no further
gradients calculation on the pruned parameters during
finetuning. The training cost of pretrained dense model
scales with 3 · ζD as discussed. In the later finetuning stage,
the cost would scale with 3 · ζP since the model deals with
a sparse model now.
RIGL [6] For the representative state-of-the-art dynamic
sparse training work RigL, iterations with no connections
updates need 3 · ζP FLOPs. At every ∆T iteration, RigL
calculates the dense gradients. The averaged FLOPs for
RigL is given by 3·ζP+2·ζP+ζD

∆T+1 .
GRANET [13] The difference between GraNet and RigL
is at the starting sparsity of the method. RigL, same as
our IEE, starts from a sparse model of the target sparsity;
whereas for GraNet, they start from a denser model of
smaller sparsity. The best result from their paper, also
shown in our main paper, starts at 50% ERK sparsity(5.8
FLOPs). However, the reported training FLOPs does not
take the denser model pretraining into account. We explain
here how we correct the training FLOPs calculation. In the
first 30 epochs, as described by GraNet [13], they gradually
prune to the target sparsity, and the final model has 3.0
FLOPs. We compute the average FLOPs in the first 30
epochs simply as (3.0 + 5.8)/2 = 4.4 and use it as ζP for
the first 30 epochs and 3.0 as ζP for the remaining training
epochs.
MEST, SPFDE [27, 28] We just use the reported
training FLOPs in the paper. However, notice that
these two methods, besides sparse training, also leverage
orthogonal augmentation techniques like data sieving and
layer freezing to additionally reduce training costs. In IEE,
we only perform sparse training as in RigL and others for a
fair comparison.
INTERSPACE PRUNING For the very latest interspace
pruning work [26], authors use FB convolution layers which
introduce additional forward and backward overhead.
Given the information provided in the paper, for a particular
convolution layer with size cout× cin×K×K, the relative
increase of forward pass would be K2/cout times the dense
forward pass. Notice that this is a constant overhead
independent of the pruning rate and sparsity of the model.
Similarly, the authors provide that the backward pass would
introduce an additional constant overhead of K2/cin times
the dense computation of gradients. Since authors provide
no exact FLOPs of the model, we also estimate a lower
bound of K2/cout and K2/cin as 32/128 ≈ 0.07 for



ResNet-50. This is a lower bound since as identified in
many works before the spatial size is the largest in the early
layers with a large K and small cout and cin processing
large-sized feature maps and dominating the overall FLOPs
of the model. Now we could calculate the FLOPs needed to
train a single example as ζP +0.07 ·ζD+2 ·(ζP +0.07 ·ζD)
which is approximately 3 · ζP + 0.21 · ζD.
NAS-BASED METHODS We also demonstrate the results
of some NAS-based methods [5, 7, 16] in the main paper
table for comparison. Since the searching involved is very
hard to quantify the training cost estimation, we only report
the estimated training cost of the discovered pruned model
calculated as (3 · ζP ). Now notice that this is a very loose
lower bound, and the actual cost could be much higher with
the architecture search.

4. Integration of IEE with Latency-
Constrained Structured Sparsity

We now present IEE with latency-constrained structured
sparsity setting. Specifically, we will highlight how we
integrate with the latest latency pruning method HALP [24].

4.1. Recap of HALP and Latency-Constrained
Pruning

For our latency-constrained structured sparsification,
we follow the latest resource-constrained pruning method
HALP [25] but impose the dynamic regime of IEE to
enhance the quality of the pruned model structure. Same
as HALP, we formulate the pruning step as a global cost-
constraint importance maximization problem, where we
take into account the latency benefits incurred every time
we remove or grow a channel from one of the layers of
the network. Similarly, we also formulate our unique
growing part as a cost-constraint importance maximization
problem. In this section, we will provide a brief recap of
HALP and how it’s used our IEE iterative prune-and-grow
setup. Given a global resource constraint Ψ defining the
maximum amount of resource we could use, HALP aims
to find a set of channels defining a sub-network achieving
the best performance under the constraint Ψ. In this case,
Ψ represents the inference latency for a target hardware
platform, for example the Nvidia TitanV GPU.

HALP then prepare a latency lookup table T , where
T l(pl−1, pl) records the layer latency at layer l with pl−1

active input channels and pl active output channels. With
this latency look-up table, HALP associates a potential
latency reduction value Rl

j to each jth channel of layer l,
computed as follows:

Rl
j = T l(pl−1, j)− T l(pl−1, j − 1), 1 ≤ j ≤ pl (1)

Rl
j estimates the potential latency saving if we prune

the corresponding channel. Now, in order to estimate

the performance of the selected sub-newtwork, HALP
measures the importance score Il

j for each jth channel of
layer l. The importance score metric adopted here is Taylor
importance [20], which is evaluated as follows:

Il
j = |gγl

j
γl
j + gβl

j
βl
j |, (2)

where γ and β are the BatchNorm layer’s weight and
bias. With R and I calculated, HALP formulates
the latency-constrained channel pruning as a Knapsack
problem where we try to maximize the total importance
but under the latency constraint Ψ. The pruned channels
can then be selected by an augmented Knapsack solver
Knapsack(I, R,Ψ), which returns the items achieving
maximum importance while the accumulated latency cost
is below the global constraint Ψ.

4.2. IEE Prune Step

As described in the main paper, in the Prune phase of the
t-th IEE step, we are going to prune a number of parameters
that satisfy the “update budget" Ωt. For integration with
the HALP framework, we first collect the importance I and
channel latency cost R from the active sparse structure
ΘK . Since the initialized compute resource is Ψ, after the
Prune step, our desired target is Ψ − Ωt. We then leverage
the Knapsack solver Knapsack(I, R,Ψ − Ωt) to choose
which channels to transfer from ΘK to ΘP .

4.3. IEE Grow Step

During growing, we also want to take the model latency
into account to prevent some latency-costly channels from
getting added back. We perform a similar latency-
constrained selection as above. Here, we collect the
importance I and channel latency cost R from the
exploration space ΘP after our Reactive & Explore step.
Then, we grow a number of parameters that satisfy the
“update budget" Ωt. Channels selected by the Knapsack
solver Knapsack(I, R,Ωt) are transferred from ΘP to
ΘK .

5. Detailed Experiment Hyperparameter and
Optimization Settings

The large-scale image classification dataset
ImageNet [3] is of version ILSVRC2012 [23], which
consists of 1.3M images of 1000 classes. We run all
experiments on ImageNet and PASCAL VOC with eight
NVIDIA Tesla V100 GPUs. Experiments on CIFAR10 [10]
are conducted with a single NVIDIA Tesla V100 GPU. All
experiments are conducted with PyTorch [22] V1.4.0.

5.1. Layerwise Sparsity Distribution

In the main paper, in our unstructured sparsity setting,
we demonstrated results of IEE and comparison with three



types of sparsity distribution, namely: Uniform, ERK,
and Non-Uniform. Here, to clear possible confusion,
we provide more detailed explanations here. Given a
predefined sparsity S or a number of available neurons, we
have different ways to allocate them across layers, which
also results in different FLOPs. With Uniform sparsity, the
sparsity of each layer Sl is equal to the total sparsity S
throughout training, i.e., S = Sl. With ERK sparsity, we
use the Erdős-Rényi-Kernel (ERK) formulation [6, 19] to
set sparsity for each layer, which means higher sparsity is
assigned to those layers with more parameters i.e., Sli >
Slj if mli > mlj , where mli represents the number
of parameters for layer li. With Non-Uniform sparsity,
we do not pose any constraints for layerwise distribution.
Concretely in pruning, with Non-Uniform sparsity, we
simply rank all neurons in the model globally. Though all
Uniform, ERK, and Non-Uniform are unstructured sparsity,
Uniform is slightly more structured than ERK which is also
naturally more structured than Non-Uniform.

5.2. Unstructured Weight Sparsity on ResNet50-
ImageNet

We use an individual batch size of 128 per GPU and
follow NVIDIA’s recipe [21] with mixed precision and
Distributed Data Parallel training. The learning rate is
warmed up linearly in the first 8 epochs reaching its highest
learning rate then follows a cosine decay [17] over the
remaining epochs. The pretrained model weight is kept
consistent with RigL [6] to ensure a fair comparison.

5.3. Unstructured Weight Sparsity on
WideResNet22-2-CIFAR10

In our experiments section, we also include results of
WideResNet22-2, which is Wide Residual Network [29]
with 22 layers using a width multiplier of 2. We use an
individual batch size of 128, an initial learning rate of 0.1
decaying by a factor of 5 every 30000 iterations, an L2
regularization coefficient of 5e−4, and a SGD momentum
of 0.9. Similarly, results of RigL are reproduced using the
same hyperparameters and optimization settings as ours,
ensuring a fair comparison.

5.4. Latency Constrained Structured Sparsity

ImageNet We follow HALP [25] for setting the
hyperparameters and optimization settings of experiments
on latency constrained structured sparsity with ResNet50
and MobileNet-V1. They are also similar to the recipe
described in 5.2. We also follow HALP [25] for
constructing the latency lookup table, which is pre-
generated targetting the NVIDIA TITAN V GPU inference
by iteratively reducing the number of channels in a layer
and characterize the corresponding latency with NVIDIA
cuDNN [1] V7.6.5. The latency measurement is conducted

100 times to avoid randomness. We also refer to HALP for
some special implementation detail such as how to deal with
the group convolution in MobileNet-V1, negative latency
contribution, pruning of the first model layer, which are all
described in detail in HALP.
PASCAL VOC We follow the "07 + 12" setting as in [15]
and use the union of VOC2007 and VOC2012 trainval
as our training set and VOC2007 test as test set. Our
SSD model, similar to HALP [25], is based on [15].
Following [8], for efficiency, we remove the last stage of
convolution layers, last avgpool, and fc layers from the
original ResNet50 classification structure. Also, all strides
in the third stage of ResNet50 layer are set to 1×1. We train
our models for 900 epochs with SGD optimizer and learning
rate schedule same as [25] with an initial learning rate of
8e − 3 which warms up in the first 50 epochs then decays
by 3/8, 1/3, 2/5, 1/10 at the 700, 800, 840, 870th epoch
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