
A. Overview of Appendix
In addition to the main method and experiments outlined

in the paper, we offer supplementary information about our
work in the Appendix. In Appendix B, we delve into im-
plementation within the methodology section. We provide
more details about our implementation in the Static Anchor
and Stochastic Anchor, as well as the Maximum Mean Dis-
crepancy Minimization. Subsequently in Appendix C, we
provide more results on dataset setting and adaptation ex-
periments, covering the Base-to-Novel Generalization and
group Robustness task. Further in Appendix D, we present
additional results of ablation studies along with their visual-
ization outcomes. Lastly in Appendix E and F, we explore
the limitations of our work and analyze its broader impact.

B. Method
B.1. Review the Adaption of CLIP

We first review the pretraining and inference stage of
the CLIP model, then we discuss the adaptation of CLIP.
During the pretraining phase, a large-scale dataset of image-
text pairs (x, y) is collected for training the model using a
contrastive learning approach. Here x represents an image,
and y denotes its corresponding textual description. For each
image x, an image encoder model fθ is parameterized by θ
to extract its visual feature vector u ∈ R1×H : u = fθ(x).
Similarly, for each textual description y, a text encoder gϕ
is parameterized by ϕ to get its feature embedding v ∈
R1×H : v = gϕ(y). For the i-th image xi and the j-th
language description yj in a batch B, we normalize their
feature vectors to a hyper-sphere using:ui =

fθ(xi)
∥fθ(xi)∥ and

vj =
gϕ(yj)

∥gϕ(yj)∥ .
Test phase of CLIP. In this phase, a predefined prompt

"a photo of a " is commonly employed for inference. Let’s
consider a single test image xtest of class C, where xtest ∈
RC×H×W and C ∈ RK for a K-class classification prob-
lem. The predefined prompt is prepended to each class label
in C to construct the language description. The zero-shot
prediction probability for the test image is determined by:

Pr (c = k | xtest ) =
exp (sim (u, vi) τ)∑K
i=1 exp (sim (u, vi) τ)

(1)

B.2. Introduction of the Prompt Tuning Method

Language Prompt Tuning involves introducing learn-
able parameters into the text branch. We follow the same
notation in [?] and [?]. In the text branch, the class label c is
formatted as a language description within a text template as
“a photo of a {label}", which can be further transferred as ỹ =
{tSOS , t1, t2, · · · , tL, cn, tEOS}. Here tl are the word em-
beddings of the text template, and cn are the class label. The

tSOS and tEOS are the learnable start and end token embed-
dings. The text encoder g encodes the input tokens ỹ through
multiple transformer blocks to generate a latent text feature
representation g̃ = g (ỹ, θg). In Language prompt tuning,
learnable text prompts Λtext ∈

{
λ1

text, λ
2
text, · · · , λL

text

}
are

appended to the input ỹ. In CoOp [?] or CoCoOp [?],
the learnable text prompts λtext are only added to input
of text encoder. While in Maple [?], the learnable text
prompts are appended to multiple transformer layers as
[. . . , ỹi] = Li ([Λtext, ỹi−1]) i = 1, 2, · · · , J , where Li

represent the i layer number in the transformer, J represent
the prompt depth.

Visual Prompt Learning involves the integration of
learnable prompts within the image branch. The input image
x is divided into M patches, and these patches are projected
to generate patch embeddings x̃ = {ecls, e1, e2, · · · , eM},
where ecls is the learnable class token. Subsequently,
learnable visual prompts are introduced as Λvisual ∈{
λ1

visual, λ
2
visual, · · · , λL

visual

}
. The learnable visual prompts

are appended to multiple transformer layers as [ci, x̃i, . . .] =
Vi ([ci−1, x̃i−1,Λvisual]) i = 1, 2, · · · , J , where Vi repre-
sent the i layer in vision transformer, J represent the prompt
depth.

Multi-modal Prompt Learning integrates language
prompt learning and visual prompt learning, combining them
synergistically. Simply combining text prompt learning and
visual prompt learning is called independent prompt learning,
which is used in UPT [?]. To foster interaction between the
image and text branches, multi-modal prompt learning em-
ploys projection layers Lt =

{
l̃1, l̃2, · · · , l̃J

}
for projecting

the learnable language prompts onto the visual prompts, de-
fined as Λvisual =

{
l̃1(λ1

text), l̃
2(λ2

text), · · · , l̃J(λL
text)

}
. This

formulation facilitates interaction between the visual and lan-
guage prompts. Such unified prompt tuning is a key feature
of the Maple [?] framework.

B.3. Static Anchor Implementation

To address the overfitting issues of text-based cross-
entropy loss in scenarios with limited data, we propose a
symmetrical static anchor alignment method, analogous to
an image-based cross-entropy loss. This method involves
two primary steps:

Step 1: Construction of Image Anchors. We use a
pre-trained CLIP image encoder to extract features for each
category in the source dataset, followed by K-means clus-
tering to identify the centroid of each category’s features,
denoted as akx. It is important to note that the dimensionality
of akx differs from that of the batch image features fθ(x).

Step 2: Alignment with Text Samples. For each image
batch, corresponding text labels represented as language
descriptions are aligned, with batch text embeddings v′ =
gϕ(y,Λtxt), where v′ ∈ RB×H , also differing in feature
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dimensions from class labels.

B.4. Stochastic Anchors Implementation

Stochastic anchors, selected during each batch, can be im-
plemented as cross-modal contrastive learning process. Tra-
ditional supervised learning, which models relationships be-
tween images and discrete labels, often neglects textual con-
cepts associated with labels. In contrast, stochastic anchors
learning fosters understanding of visual concepts through
enforcing batch-level text-image alignment.

We construct a contrastive similarity matrix s′ =
sim(u, v′), where s′ ∈ RN×N . This matrix supports the
formulation of both image-to-text and text-to-image con-
trastive losses, averaging these to derive the final text-image
contrastive loss. In this matrix, only diagonal entries are
treated as positive examples, enhancing the robustness of the
latent space by introducing a larger set of negative samples.

B.5. Maximum Mean Discrepancy Implementation

Maximum Mean Discrepancy (MMD) is a kernel-based
method primarily used to test the equality of two distribu-
tions from samples. Introduced in [?], MMD compares the
mean embeddings in a feature space, facilitating its use as
a loss function in various machine learning tasks, including
density estimation, generative modeling, and inverse prob-
lems tackled with invertible neural networks. Its simplicity
and robust theoretical foundations make MMD particularly
advantageous.

To compute MMD for multi-modal data, a product mea-
sure is constructed to create a new probability space. Com-
bining two probability spaces increases the complexity of the
resulting σ-algebra, necessitating additional samples to char-
acterize the probability space, as noted in Fact 3. We propose
Equation 5 to define an induced measure, specifically the
anchor-aligned probability measure, as a replacement for the
traditional product measure in MMD computation. Equation
5 is essential for the application of MMD in anchor-aligned
feature spaces. The transformation of the original probability
measure Px via an anchor-aligned mapping is demonstrated.
This equation defines a new probability measure, P ay

x , cor-
responding to the anchor ay .

Equation 6 specifies the MMD loss between two distri-
butions, Pid

x (in-domain) and Pood
x (out-of-domain), within

the anchor-aligned feature space. This equation quantifies
the discrepancy between two probability distributions in the
anchor-aligned feature space. Here is how to use Equation 6
for the current task: The first term computes the expectation
over all xid samples, while the second term computes the
expectation over all xood samples. Here, k is the kernel func-
tion, and in our experiments, we use the Gaussian kernel. f
is the image encoder, and θ is being updated during training.
In practical implementations, the expectations are replaced
with sample averages.

C. Experiments Protocol

C.1. Base-to-Novel Dataset Split

In our experiment, we partition all class samples into two
distinct groups, as outlined in the tables: the Base group
(Table 1) and the Novel group (Table 2).

Consider the ImageNet dataset illustrated in Table 3,
which consists of 1,000 classes. We divide the training
set into two subsets, each containing 500 non-overlapping
classes. For instance, one subset may include classes such as
["tench", "goldfish", "great white shark", "tiger shark", ...],
and the other might feature ["spindle", "sports car", "spot-
light", ...]. This separation ensures that no class from one
group appears in the other, thereby preventing the model
from encountering unknown classes during training and en-
hancing the fairness and credibility of our out-of-distribution
evaluations. The test set follows a similar bifurcation, main-
taining correspondence with the class labels from the training
set.

Classes Train-Samples Val-Samples Test-Samples

OxfordPets 18 288 368 1881
Flowers102 51 816 817 1053
FGVCAircraft 50 800 1667 1666
DTD 23 368 564 864
EuroSAT 5 80 2700 4200
StanfordCars 98 1568 818 4002
Food101 50 800 10100 15300
SUN397 198 3168 1985 9950
Caltech101 50 800 825 1549
UCF101 50 800 949 1934
ImageNet 500 8000 25000 25000

Table 1. Base class samples statistics. The first column "Classes"
denotes the total number of classes for each category. The columns
"Train-Samples", "Val-Samples", and "Test-Samples" represent the
respective number of images allocated for model training, valida-
tion, and testing purposes.

Classes Train-Samples Val-Samples Test-Samples

OxfordPets 19 304 368 1788
Flowers102 51 816 816 1410
FGVCAircraft 50 800 1,666 1667
DTD 24 384 564 828
EuroSAT 5 80 2,700 3900
StanfordCars 98 1568 817 4039
Food101 51 816 10,100 15000
SUN397 199 3184 1,985 9900
Caltech101 50 800 824 916
UCF101 51 816 949 1849
ImageNet 500 8000 25000 25000

Table 2. Novel class samples statistics. The first column "Classes"
denotes the total number of classes for each category. The columns
"Train-Samples", "Val-Samples", and "Test-Samples" represent the
respective number of images allocated for model training, valida-
tion, and testing purposes.
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Classes Train-Samples Val-Samples Test-Samples Task

OxfordPets 37 2944 736 3669 Fine-Grained
Flowers102 102 4093 1633 2463 Fine-Grained
FGVCAircraft 100 3334 3333 3333 Fine-Grained
DTD 47 2820 1128 1692 Textures
EuroSAT 10 13500 5400 8100 Satellite Images
StanfordCars 196 6509 1635 8041 Fine-Grained
Food101 101 50500 20200 30300 Food
SUN397 397 15880 3970 19850 Scene
Caltech101 100 4128 1649 2465 Object
UCF101 101 7639 1898 3783 Action
ImageNet 1000 12800000 N/A 50000 Object

Table 3. All class samples statistics from the original datasets.
The last column "task" provides a broad categorization of these
image classification tasks, such as fine-grained classification or
texture classification.

C.2. Group Robustness Baseline

For the group robustness experiment described in Section
4.4, we give a more comprehensive introduction about the
baseline method that we compared with.

We evaluate our method against several methods in group
robustness experiments, including zero-shot classification,
ERM linear probing [?], and ERM adapter training [?]. Ad-
ditionally, we compare against recent approaches tailored to
enhancing downstream transfer in analogous scenarios, all
while utilizing only pretrained model embeddings [?].

One such method is Weight space ensembling (WiSE-
FT) [?], which initially trains a linear classifier using stan-
dard ERM and then combines the classifier outputs with the
initial zero-shot predictions. Although originally proposed
for training linear classifiers and fine-tuning the original
weights of a foundational model, we focus on the prompt
tuning in the extra parameter in our context.

Another approach is Deep feature reweighting (DFR)
[?], which entails training a linear probe on embeddings
computed from a pretrained model over group-balanced data.
Similar to previous studies [?, ?], we treat incorrectly and
correctly classified samples as proxies for distinct groups.

Lastly, we consider the Contrastive Adapter approach [?],
which introduces contrastive adapting. This method trains
adapters with contrastive learning to bring sample embed-
dings closer to both their ground-truth class embeddings
and other sample embeddings within the same class. While
our method differs from this work, as we apply Contrastive
learning to Prompt Tuning instead of Adapters.

C.3. Training Details

We utilized SGD as the optimizer optimizer with an initial
learning rate of 0.0025 for Batch size 4, and a learning rate
of 0.01 for batch size 128. The cosine annealing strategy is
chosen to schedule the learning rate. For the Base to Novel
Generalization setting, we use a few-shot training of 16
shots with a training duration of 20 epochs, while for Group
Roubustness, we train 10 epochs on Waterbird and 5peochs

Method Pets Flowers Aircraft DTD EuroSAT Cars Food Caltech UCF Avg

Base
G-Means 95.4 97.6 43.2 82.9 91.9 78.6 90.7 98.2 86.9 85.0
H-Cluster 95.2 97.5 43.1 83.0 92.2 78.7 90.5 98.0 86.7 85.0
K-Means 95.3 97.5 43.0 83.3 92.4 78.8 90.6 98.1 86.5 85.1

Novel
G-Means 97.5 77.2 38.2 63.6 68.1 75.4 91.7 94.5 78.2 76.0
H-Cluster 97.4 77.1 36.7 64.1 72.5 74.9 90.5 94.2 78.5 76.2
K-Means 97.5 77.7 36.9 63.9 79.4 75.2 91.7 94.1 79.1 77.3

Table 4. Anchor Selection Method Comparison. K-means is
the default anchor selection method used in this paper. G-Means
represents the group means anchor selection method. H-Cluster
means hierarchical clustering anchor selection method. The ’Avg’
represents the average accuracy over all the datasets.

on CelebA for the full dataset. All images were resized
to 224x224 pixels, utilizing the same image preprocessing
technique for the CLIP image encoder. All CLIP models
adopted the ViT-B/16 backbone. We maintained consistency
across all other settings as the baseline work, making modifi-
cations solely to the loss function to ensure a fair comparison
between our method and the standard cross-entropy loss.

D. More Experiments Results

D.1. Anchor Selections Comparison

To evaluate whether different static anchor selections
affect the final results, we conducted the ablation study on
the anchor selection experiment, with the results shown in
Table 4. We used the pre-trained CLIP model with a ViT-
B/16 backbone as the feature extractor. All training images
from each dataset were fed into the model’s image encoder,
and the resulting features were stored. The features are
grouped by the ground truth label, then we use different
anchor selection methods to choose the most representative
one as the static anchor. The anchor selection methods we
have are (1) K-means: we utilize the cluster center of K-
means as the static anchor; (2) Hierarchical clustering: also
the cluster center is utilized as the static anchor; (3) Group
means, we direct calculation of the mean features for all
the samples in each group. Table 4 shows that K-means
and other methods do not have significant differences, while
K-means yield better results compared to the hierarchical
clustering method.

D.2. t-SNE Visualization

We show more t-SNE visualization results in Figure 1. In
Figure (a), it is evident that applying our LAligned method to
LPT increases the distance between cluster centers of the
green color point and the orange color points. This indicates
that our method enhances the learned latent space, bringing
it closer to real samples, strengthening the model’s decision
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LPT (Acc=87.1) Ours-LPT (Acc=89.3) VPT (Acc=89.4) Ours-VPT (Acc=92.9)

(a) t-SNE on EuroSAT-Base (b) t-SNE on EuroSAT-Novel

VPT (Acc=68.5) Ours-VPT (Acc=73.2) Maple (Acc=59.2) Ours-Maple (Acc=63.9)

(c) t-SNE on Flowers102-Novel (c) t-SNE on DTD-Novel

Figure 1. The t-SNE Visualization of Latent Embeddings. The arrows in the figures illustrate our method can push the boundary between
the two categories further apart. The circles in Figures (a) and (b) demonstrate that our method can separate the overlapping features of the
two categories away from each other.

(a) Confusion Matrix of Per-Class Accuracy on -EuroSAT-Novel

PromptSRC (Acc = 73.9) Ours-PromptSRC (Acc = 79.4) VPT (Acc = 85.2) Ours-VPT (Acc = 90)

(b) Confusion Matrix of Per-Class Accuracy on -Flowers102-Novel

Figure 2. The Confusion Matrix for Per-Class Accuracy. For Figure (a), without our method, the category in the first row is misclassified
as the second category. After using our method, the first category classification is successfully made to achieve the highest accuracy.For
Figure (b), our method also significantly improves one misclassified subclass, thereby improving the overall accuracy on the entire task.

boundaries, and consequently improving its accuracy. Simi-
lar improvements are observed in Figures 1 (b) (c) and (d).
Additionally, the circle in Figure 1 (a) and Figure (b) shows
that by using our method, we separate the overlap clusters to
no-overlap clusters, which also confirms the effectiveness of
our LAligned method.

D.3. Confusion Matrix Comparison

To conduct a more granular analysis of the performance
improvements brought about by our method, we visualized
the confusion matrices representing the accuracy for each
category. The experimental results are illustrated in Figure 2.
In Figure 2 (a), in the PromptSRC classification experiment
on the EuroSAT dataset, the highest value in the first row
of the baseline confusion matrix deviated from the diagonal,
representing the Pasture Land category, with an accuracy of
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only 13.2%. Upon utilizing our LAligned loss function, the
first row of the confusion matrix aligned with the diagonal,
and the classification accuracy for Pasture Land improved to
68%, which lead to the all-class accuracy improved to 79.4%.
Similarly in Figure 2 (b), the figure shows the classification
experiments of VPT on the Oxford Flowers dataset. In the
confusion matrix of the baseline model, we observed that
the classification accuracy for the fifth category, English
Marigold, deviated significantly from the diagonal, with
an accuracy of only 20%. After applying our proposed
LAligned loss function, the classification accuracy for English
Marigold increased to 90%.

E. Limitations
Our method aims to construct relative representations

in the latent space for cross-modal alignment between im-
age and text modalities, utilizing both static and stochastic
anchors. A significant limitation of this method is its high de-
pendency on the selection of the Anchor. For instance, if the
static anchor selected does not accurately capture the clus-
tering characteristics of the targeted image category, it may
result in biased cross-modal alignment, thereby adversely af-
fecting the learning performance of the model. Additionally,
in complex or non-standardized scenarios, finding a suitable
static anchor point can be challenging, which constrains the
general applicability of our approach

F. Broader Impact
Our proposed approach offers an effective technique

applicable to visual language models characterized by an
Image-Text dual-branch architecture, which is plug-and-play
and can be integrated with many existing prompt tuning
methods. Consequently, applying our method to the more
sophisticated Prompt Tuning framework could yield further
enhancements in performance. We leave these explorations
for future research.
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