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Supplementary Contents
In this document, we provide supplementary materials for
our paper. This supplementary is organized as follows:

• Section 1 provides motivation and evaluation of
the proposed Adaptive Sparse Convolution Block
(ASCB).

• Section 2 we analyse the effectiveness of proposed
model.

• Section 3 further analyses the difficulty of the radar
point cloud upsampling submodule.

• Section 4 introduces the evaluation metrics used for
depth estimation task.

• Section 5 shows more qualitative results under differ-
ent weather conditions.

1. Adaptive Sparse Convolution Block Analysis
As outlined in [4], the sparse convolutional layer was

initially applied to lidar-only depth completion tasks. It op-
erates on a sparse lidar depth map by generating a mask to
identify pixels filled with data. A sequence of sparse convo-
lutional layers with varying kernel sizes then processes the
sparse depth map alongside the generated mask, facilitating
information flow from known to unknown pixel positions.

In the context of driving, objects farther from the ego-
vehicle appear smaller on the image plane, and radar detec-
tions are predominantly triggered by moving objects. These
observations guide our selection of an adaptive combination
of sparse convolutional layers aimed at achieving optimal
receptive fields for different distances.

This section begins by analyzing the dimensions of 2D
bounding boxes across specified distance ranges: [0, 40),
[40, 70), and [70,+∞). Subsequently, we delve into the
specifics of our ASCB.

Fig. 1 showcases a boxplot illustrating the variation
in width and height of 2D bounding boxes within these
ranges, highlighting the significant size disparity between
the [0, 40) range and the [70,+∞) range. This variation
motivates our approach to process sparse radar depth maps
DR by generating distinct masks for different distances:
M40

0 , M70
40 , and M+∞

70 , based on the depth value of each
radar detection.

For instance, the mask for the [0, 40) range is defined as
follows:

M40
0 (i, j) =

{
1 if 0 ≤ DR(i, j) < 40
0 otherwise (1)

0m - 40m 40m - 70m 70m - infinity
distance

0

100

200

300

400

va
lu

e

dimension
width
height

Figure 1. Analysis of the width and height of the 2D bounding
boxes appear within ranges [0, 40), [40, 70), and [70,+∞).
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Figure 2. Visualization of the proposed Adaptive Sparse Convo-
lution Block, which takes radar projected map xRadar and the ex-
tracted masks M40

0 , M70
40 , and M+∞

70 as inputs.

Kernel size combinations for each distance range are
then chosen based on the observed bounding box sizes.
Considering the median bounding box size is approximately
80 pixels in the [0, 40) range, achieving a receptive field of
80 requires a substantial increase in parameters. Ultimately,
we select the kernel size sets of [11× 11, 7× 7, 7× 7, 5×
5, 5×5, 3×3], [11×11, 7×7, 5×5, 5×5, 3×3, 3×3], and
[11×11, 7×7, 5×5, 3×3] for the distance ranges of [0, 40),
[40, 70), and [70,+∞) meters, respectively. These config-
urations, with receptive fields of 33, 29, and 23, are tailored
to each range, ensuring appropriate propagation lengths for
effective radar data processing. The proposed ASCB archi-
tecture is visualized in Fig. 2.

2. Model Efficiency Analysis

Our model comprises 50 million training parameters, in-
cluding 22 million for image feature extraction, 16 million
assigned to the radar encoder, and 12 million for decod-
ing. Within the radar encoder, 75% of the parameters are
allocated to the ResNet encoder. We conducted additional
experiments using only the ResNet18 encoder for radar fea-



ture extraction while keeping the rest of the architecture un-
changed. This configuration achieved an MAE of 1.925.
By incorporating an additional 4M parameters to extract
3D features, aggregate 2D and 3D features, and perform
point cloud upsampling, our final proposed model achieves
a 6.01% improvement in MAE, demonstrating the effective-
ness of our method.

3. Radar Point Cloud Upsampling Submodule
Analysis

This section first describes the difficulties of the pro-
posed upsampling task. Then, we visualize the upsampling
results.

3.1. Upsampling Ground Truth Generation
(a) Lidar Points Projections (b) Radar Points Projections (c) Upsampling Ground Truth

Figure 3. Comparison of the radar and lidar point cloud density.
(c) visualize the selected lidar point projections employed for point
cloud upsampling.

Since there is no ground truth to upsample the radar point
cloud to make it denser and clearer, we detail a method for
generating ground truth for point cloud upsampling in the
main paper, utilizing lidar data. Specifically, for a given
frame, we compute the Chamfer distance [1] between the
lidar and radar point clouds, selecting the NL lidar points
closest in the distance. Fig. 3 displays the projection of
radar and lidar points in parts (a) and (b), respectively, and
showcases the projection of the chosen ground truth points
in part (c).

Difficulties. Due to the inherent noisiness and ambigu-
ity of radar point clouds, many points are inaccurately po-
sitioned. This is depicted in Fig. 4, where points within the
blue box are accurately returned from a moving car, while
those within the yellow box predominantly represent noise.
Consequently, as illustrated in part (b) of Fig. 4, the major-
ity of the upsampling ground truth points are concentrated
in the blue box, closer to the precise radar detections. For
clearer visualization, Fig. 4 (c) presents a combined plot of
ground truth points and radar points, depicted in blue and
yellow respectively.

This proximity poses a challenge for the network in
learning the offsets for radar points that are significantly
distant from their corresponding ground truth points.

Figure 4. Visulization of the difficult case.

3.2. Upsampling Results

Figure 5. Visulization of upsampled points along with the original
radar points and the sampled upsampling ground truth.

In our approach, point cloud upsampling serves as an
auxiliary task to depth estimation, designed to derive mean-
ingful features from precise lidar data. Consequently, our
upsampling model is introduced as a compact plug-in mod-
ule, consisting of merely around 600 thousand parameters.
Given this limited parameter set, achieving highly accurate
upsampled positions relative to the ground truth, particu-
larly for the challenging scenarios outlined in Sec. 3.1,
proves to be difficult.

However, the results show that the upsampled points are
slightly moving toward the ground truth. Fig. 5 illustrates
this through a series of visualizations: the first column (a)
displays the projected radar points; the second column (b)
shows the lidar points selected as upsampling ground truth;
and the third column (c) presents the predicted upsampled
points. Notably, in these examples, most of the ground truth
points cluster around the detected object, highlighted by the
yellow box in (b). In the estimated upsampled points, the
density of the points around the detected objects increases in
the regions highlighted in yellow boxes. At the same time,
the number of noisy points decreases where no ground truth
points are located. These results indicate the efficacy of this
upsampling submodule.

4. Evaluation Metrics
Table 1 outlines the evaluation metrics employed in this

study for comparing performance. Here, Ω denotes the set
of 2D pixels for which ground truth LiDAR depth values
are available.

5. Qualitative Results
In this section, we compare depth maps predicted by our

proposed GET-UP and the best-performing fusion model
[2] under sunny, rainy, and night conditions.



Table 1. Metrics definition for depth estimation task.

Definition
MAE 1

|Ω|
∑

x∈Ω |d̂(x)− dgt(x)|
RMSE ( 1

|Ω|
∑

x∈Ω |d̂(x)− dgt(x)|2)1/2

AbsRel 1
|Ω|

∑
x∈Ω |d̂(x)− dgt(x)|/dgt(x)

log10 1
|Ω|

∑
x∈Ω | log10 d̂(x)− log10 dgt(x)|

RMSElog
√

1
|Ω|

∑
x∈Ω || log10 d̂(x)− log10 dgt(x)||2

δn Thre δn = |{d̂(x) : max( d̂(x)
dgt(x)

,
dgt(x)

d̂(x)
) < 1.25n}|/|Ω|

5.1. Under Night Scenario

Figure 6. Qualitative Comparison between our GET-UP and
RadarNet [3] under night condition.

As illustrated in Fig. 6, the depth maps generated by [3]
exhibit noticeable discontinuities, in contrast, our approach
succeeds in producing consistently smooth and accurate
dense depth maps, even in low-light conditions. Objects
are highlighted in blue boxes to demonstrate our method’s
capability to precisely detect objects and define their bound-
aries under challenging lighting scenarios.

5.2. Under Rainy Scenario

Figure 7. Qualitative Comparison between our GET-UP and
RadarNet [3] under rainy condition.

As depicted in Fig. 7, RGB images become blurry in
rainy conditions, posing additional challenges. Despite this,
our GET-UP method successfully identifies objects at long

distances, even in rainy scenarios. For instance, in the first
row, our approach accurately detects a truck at a far dis-
tance, whereas RadarNet [3] fails to estimate the correct
range for this truck. Objects are highlighted in blue boxes
to facilitate a clearer comparison of the outcomes.

5.3. Under Sunny Scenario

Figure 8. Qualitative Comparison between our GET-UP and
RadarNet [3] under sunny condition.

Fig. 8 showcases the dense depth maps predicted in
sunny conditions. Our GET-UP method successfully iden-
tifies and distinguishes between two trucks in the first row,
a task where RadarNet falls to differentiate between the two
vehicles. In subsequent rows, our technique demonstrates
its capability to define clear boundaries for each object, in
contrast to RadarNet, which struggles to accurately capture
the shape of the objects.

In summary, our approach exhibits superior performance
across various weather conditions, underscoring the effec-
tiveness of the proposed method.
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