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Figure 1. The structure of the UNet in Zero123. We de-
note the l-th layer of the UNet encoder as Ll, where l ∈
{1, 2, ..., 12}. Then the calculation of l-th layer can be formu-
lated by Ll(Ir→i,t, Iq,∆θqi,∆ϕqi).

1. Accelerating inference
In the light version method which is discussed in Section

4.4 of the main paper, we incorporate several techniques and
strategies to accelerate the inference. The detailed descrip-
tion of these approaches is as follows.

1.1. Feature reuse

Previous works [7, 12] have shown that the early layers
in the encoder of the UNet focus more on the feature extrac-
tion, and the encoder features change gently across different
time steps. Similar to that, in our method, we observe that
for the same conditioned image and noisy latent, the early
layers of the UNet encoder share similarity across adjacent
viewpoints. Thus, when calculating the matching loss of
pose candidates, for each i, we propose to share the same
encoder feature across adjacent poses. As illustrated in Fig-
ure 1, we denote the l-th layer of the UNet encoder as Ll,
where l ∈ {1, 2, ..., 12}. Then the calculation of l-th layer

* denotes joint first author

can be formulated by Ll(Ir→i,t, Iq,∆θqi,∆ϕqi). As our
feature reuse is applied to every (Ir, Iq) and every inter-
mediate viewpoint i independently, we omit the Iq and the
terms containing i or r here, simplifying the expression to
Ll(Iq, θq, ϕq). We further use θ

(k)
q , ϕ

(k)
q to represent the k-

th pose candidate, so the output feature of l-th layer can be
formulated as:

Ll(Iq, (θ
(k)
q , ϕ(k)

q )) (1)

We divide the upper hemisphere along into 4 grids
where each grid occupies δazimuth = 360◦

4 = 90◦ and
δelevation = 90◦. Those poses that fall into the same grid
are regarded as nearby viewpoints, and the pose candidate
closest to the grid center is referred to as the center pose.
When searching for θq, ϕq , we firstly compute the matching
loss of each grid’s center pose in the same way as usual,
where the calculations are performed across the entire U-
Net. During this process, the features of the early Nr layers
will be cached for subsequent reuse, with Nr meaning the
number of layers we apply feature reuse.

Once the feature cache is initialized, we reuse the cache
in the calculation of the remaining pose candidates. In other
words, we approximate the Expression 1 by

Ll(Iq, center pose(θ(k)q , ϕ(k)
q )), (2)

where center pose(·) is a function that returns the center
pose of the grid in which the input pose falls.

We find that Nr = 6 yields a good balance between ac-
curacy and speed. By applying this technique, the compu-
tational time of our method decreases to 0.8 times the orig-
inal duration, with only a slight reduction in Racc@15 and
Racc@30 by 0.01 and 0.02, respectively.

1.2. Intermediate viewpoints pruning

As the inference time approximately scales linearly
with the number of intermediate viewpoints, we propose
a strategy to “prune” away some intermediate viewpoints.
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We hand-picked the strategy based on the trade-off be-
tween speed and accuracy. The final strategy is as fol-
lows: (1). We define distance((θ1, ϕ1), (θ2, ϕ2)) =√

(θr − θi)
2
+ (ϕr − ϕi)

2. We firstly discard the loss
terms associated with viewpoints near Ir, specifically those
for which distance((θr, ϕr), (θi, ϕi)) < TH1. Instead, we
use a single loss term

w||ϵΘ(Ir,t|Iq,∆θqi,∆ϕqi)− ϵ ||22 (3)

to replace the discarded terms, where w represents the num-
ber of discarded viewpoints. Essentially, we approximate
||ϵΘ(Ir→i,t|Iq,∆θqi,∆ϕqi)−ϵ ||22 by Expression 3 for each
discarded i. (2). We further discard the viewpoints that
are significantly distant from (θr, ϕr), i.e., those for which
distance((θr, ϕr), (θi, ϕi)) > TH2. The rationale behind
this is that the generated view Ir→i tends to have poor qual-
ity, which might contribute less to solving Eq. (5) in the
main paper.

We find that the thresholds of TH1 = 45◦ and TH2 =
145◦ provide a good balance between accuracy and speed.
Under this configuration, we reduce the number of interme-
diate viewpoints from 64 to 43. By applying this technique,
the computational time of our method decreases to 0.69
times the original duration, with no reduction in Racc@15
and only a minor drop of 0.02 in Racc@30.

1.3. Difficulty-guided router

Given an image pair, we firstly identify the “difficulty”
(which can also be understood as viewpoint change or sim-
ilarity) for each pair. Then, for a pair with low difficulty,
we perform naive matching proposed in E2VG, which can
be completed in 150ms. For a pair with high difficulty, we
route it to our two-side matching method. For a pair with
moderate difficulty, we also apply our two-side matching
but with a reduced M . We use the number of LoFTR match-
ing points to determine the difficulty level.

1.4. Quantitative result of the light version method

After integrating all the aforementioned acceleration
techniques into our method and adopting a light configu-
ration where M is reduced to 1

2 , we obtain our light version
method, discussed in Section 4.4 of the main paper. The
quantitative results are shown in Table 1.The light version
method can process a query image in 1.12 seconds while
still outperforms other baseline methods in accuracy by a
large margin. It should also be noted that our method can
be easily parallelized by distributing the matching loss cal-
culation of different candidates across multiple GPUs. This
parallelization can reduce the total processing time approx-
imately by a factor equal to the number of GPUs. With
multiple GPUs, we can process query images in real-time.

Although our method is slower than some baseline meth-
ods with a single GPU, accuracy is much more impor-

Table 1. The comparison of inference time for each query image.
We present results on the NAVI dataset.

Method Inference time (s) Acc@15◦ Acc@30◦

IDPose 27.52 10.09 36.66
E2VG(N=64) 0.13 42.69 64.21
Ours 7.84 55.32 82.14
Ours(Light) 1.12 54.28 78.93

Table 2. Ablation studies on the number of the Monte-Carlo sam-
pling M in IDPose on a 30% subset of NAVI.

Method Acc@15◦ Acc@30◦

IDPose(M = 16) 15.11 38.82
IDPose(M = 32) 15.07 37.95
IDPose(M = 64) 15.43 38.57
Ours 56.84 83.16

tant than efficiency especially in non-real-time applications
like reconstruction from unposed views and offline AR. We
showcase in the supplementary video that we can generate
AR videos using accurate poses while the baseline method
fails to estimate camera poses correctly.

2. More ablation analysis
The matching scheme adopted by IDPose can be con-

sidered a special case of our two-side matching where the
reference set contains only Ir. In other words, they estimate
the pose by minimizing:

1

M

M∑
j

||ϵΘ(Ir,t|Iq,∆θqi,∆ϕqi)− ϵ(j) ||22, (4)

In our main paper we have present the result of IDPose
where M = 16 which is their standard configuration. Here
we additionally present the result with a larger M for ID-
Pose. For computational reasons, we perform this experi-
ment on a 30% subset of NAVI. As shown in Table 2, there
is no obvious enhancement in performance as M increases
from 16 to 64. This shows that simply increasing M in the
naive matching can not lead to better performance.

3. Stability and robustness
3.1. Robustness to artifacts from diffusion models

For diffusion-based methods, the performance of the
generative diffusion model can affect the accuracy of pose
estimation. Typically, our method is robust to minor arti-
facts generated by the diffusion model, as shown in Figure
4. Due to the two-sided matching approach, our method ex-
hibits greater robustness under such conditions compared to
other diffusion-based methods.



Figure 2. Visual Comparison on the GSO dataset [4].

Figure 3. Visual Comparison on the NAVI dataset [6].

Figure 4. A visual example illustrating that our method is more ro-
bust to minor artifacts generated by the diffusion model compared
to other diffusion-based methods.

To show that our method performs more stably on differ-
ent objects than several key baseline methods, we report the
minimum and variance of rotation accuracy at 30◦ across all
objects of NAVI in Table 3. Our minimum accuracy is the
highest with the lowest variance, indicating that our method
is more stable than baselines.



Table 3. The minimum and variance of rotation accuracy at 30◦

across all objects of NAVI.

Method Min of Acc@30◦(%) ↑ Variance of Acc@30◦ ↓
Relpose++ 5.00 0.075
3DAHV 10.00 0.097
IDPose 0.00 0.089
E2VG 25.00 0.050
Ours 38.89 0.033

Figure 5. An example illustrating that our method can handle mod-
erate lighting changes and occlusions.

Figure 6. Dealing with multiple objects.

3.2. Robustness under complex scenes

Our method can handle moderate lighting changes and
occlusions, as shown in the examples in Figure 5. However,
extreme occlusions or lighting changes can affect our per-
formance, which also affects other baseline methods. In this
work, we focus on sparse view setting and is not specifically
designed to address these challenges. There are works that
can tackle such challenges such as pixel-wise voting. It is
promising to combine these techniques with our methods to
improve robustness in future works.

4. Scenes with multiple objects
For scenes with multiple objects, we can firstly segment

all objects out and then apply our method separately. We
show an example in Figure 6.

5. More visual comparisons
We present more visual comparisons on the GSO dataset

in Figure 2 and the NAVI dataset in Figure 3.

6. Performance under multi-view setting
We adapt our method to a setting with 16 reference

views. We adopt a simple strategy of selecting the nearest
reference view as the conditioning image. This approach
leads to a 19% accuracy increase on the filtered testing
dataset that includes only objects with sufficient images.

Table 4. The quantitative comparison results under smaller thresh-
olds on the synthesized dataset GSO [4], and the real dataset
NAVI [6].

Methods
NAVI [6] GSO [4]

Rotation Accuracy Rotation Accuracy
1◦ 5◦ 10◦ 1◦ 5◦ 10◦

3DAHV [16] 0.00 6.37 18.28 0.00 4.13 10.87
IDPose [3] 0.37 1.48 4.44 0.22 5.22 14.13
Relpose++ [8] 0.37 9.14 15.47 0.22 2.17 7.83
E2VG(N=128) [14] 0.19 13.01 30.38 0.22 11.30 28.26
Ours 0.56 10.82 34.31 0.22 17.61 42.39

Moreover, there are several ways to further enhance our
method in a multi-view setting, such as stochastic multi-
view conditioning [15] and fine-tuning the generative model
using LoRA [5].

7. The Accuracy under smaller thresholds
The accuracy under smaller thresholds are shown in Ta-

ble 4.

8. The comparison under different viewpoint
changes

Following Table 2 in the main paper, here we present
a more detailed result regarding how the accuracy gap be-
tween the proposed method and baselines changes as δ
changes. The analysis is performed on the GSO dataset,
which comprises images with viewpoints uniformly dis-
tributed across the upper hemisphere, thus providing more
cases with large pose changes than NAVI.

In Figure 7 (a), we present the Acc30◦ for pairs where
δ ≥ D, across various values of D. When D = 0◦,
which includes all pairs, our accuracy is 1.26 times that
of E2VG. As D increases to 135◦, the ratio increases to
1.65. In Figure 7 (b), we display Acc30◦ for pairs where
D′ − 5◦ ≤ δ < D′ + 5◦, with D′ = {5◦, 15◦, ..., 175◦}. It
is evident that for pairs with small viewpoint changes, both
our proposed method and E2VG perform well. However, as
D′ increases, the accuracy of E2VG declines more rapidly
compared to our method.

Interestingly, in Figure 7 (a), when δ > 165◦ the perfor-
mance of all three diffusion-based methods improves com-
pared to moderate δ. This might be due to the following two
reasons:

• A δ closer to 180◦ means that Ir and Iq are nearly
opposite. Additionally, since almost all images are in
the upper hemisphere of the object, this further sug-
gests that the elevation of Ir and Iq is near zero, while
the azimuth change approaches 180◦. As all three
diffusion-based methods use an elevation estimation
module [10] to estimate the elevation of Ir, and we



Table 5. The translation accuracy on the two testing datasets. We
compute the translation error as the angle between the normalized
ground-truth translation tgt and the normalized predicted transla-
tion tpr by arccos t⊺gttpr.

Methods
NAVI [6] GSO [4]

Translation Accuracy Translation Accuracy
15◦ 30◦ 15◦ 30◦

SIFT [11]+ZoeDepth [2]+PnP 12.47 25.25 5.65 15.65
SIFT [11]+ZoeDepth [2]+Procrustes 9.60 24.31 3.48 14.57
Map-free-loc RPR [1] 13.81 35.92 3.91 16.52
LoFTR [13] 20.74 30.38 29.57 36.52
Relpose++ [8] 24.84 42.71 20.22 32.61
E2VG(N=128) [14] 50.64 72.41 42.39 60.65
Ours 62.70 82.57 59.78 75.43

empirically found that this module works slightly bet-
ter when the input image has a low elevation, a pos-
sible explanation for this phenomenon is that when δ
is closer to 180◦, all Ir have a low elevation, allow-
ing the elevation estimator to give a better estimation
compared to pairs under other δ, which finally leads
to better Acc30◦. To validate this explanation, we con-
ducted an experiment where the ground-truth elevation
Ir is provided. We found that the phenomenon was re-
duced by half (when δ is closer to 180◦, the increase in
Acc30◦ was halved), partially supporting this explana-
tion.

• There are only six pairs where δ ≥ 175◦ and only 21
pairs where δ ≥ 170◦, making the results more suscep-
tible to random variation. It is possible that Zero123
happened to perform better on these few pairs com-
pared to others.

9. The translation accuracy
In the main paper, we focus on the 3D rotation because

the 3D translation can be easily derived from the rotation
and the given 2D object bounding box [14,16], meaning the
translation accuracy is highly related to the rotation accu-
racy.

Here we present the translation accuracy in Table 5. The
translation contains a scale ambiguity, so we follow previ-
ous work [14] to compute the translation error as the angle
between the normalized ground-truth translation tgt and the
normalized predicted translation tpr by arccos t⊺gttpr. The
results of ID-Pose and 3DAHV are not reported because ID-
Pose and 3DAHV do not estimate the object translation in
their works.

10. Performance on symmetric objects
There is one symmetric object in the testset, as visu-

alized in Figure 8. For this object, the proposed method
reaches 60% for Acc15◦ and 65% for Acc30◦ while all

Table 6. The quantitative comparison results on the rotated NAVI
dataset.

Methods
Rotated NAVI

Rotation Accuracy Translation Accuracy
15◦ 30◦ 15◦ 30◦

SIFT [9]+ZoeDepth [2]+PnP 18.09 23.90 13.68 22.08
SIFT [9]+ZoeDepth [2]+Procrustes 15.47 23.95 8.11 19.31
Map-free-loc RPR [1] 8.69 17.58 7.78 22.23
LoFTR [13] 13.14 21.28 17.38 28.97
IDPose [3] 11.38 25.14 - -
3DAHV [16] 12.50 30.72 - -
Relpose++ [8] 12.10 26.46 12.74 29.20
E2VG(N=128) [14] 29.81 49.34 35.36 60.27
Ours 27.68 59.57 35.72 67.12

baselines achieve less than 40% at Acc15◦ and less than
55% at Acc30◦. A visual comparison can be found in Fig-
ure 2. This case indicates that, despite the object’s sym-
metric shape, the proposed method can effectively capture
details like the shadow on this object.

To quantitatively show how the proposed method works
on objects with axial symmetry, we select six objects from
the GSO [4] dataset as shown in Figure 9, and render mul-
tiple images to create a new testing dataset of axially sym-
metric objects. Using the difference in elevation angle as
the error metric, the proposed method achieves an average
accuracy of 78% at Acc15◦ and 93% at Acc30◦ across the
six objects.
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