
MOOSS: Mask-Enhanced Temporal Contrastive Learning for Smooth State
Evolution in Visual Reinforcement Learning

– Supplementary Material –

Jiarui Sun, M. Ugur Akcal, Girish Chowdhary
University of Illinois Urbana-Champaign

Urbana, IL, USA
{jsun57, makcal2, girishc}@illinois.edu

Wei Zhang
Visa Research

Foster City, CA, USA
wzhan@visa.com

A. Additional Backgrounds
A.1. Soft Actor Critic

Soft Actor-Critic (SAC) [3] is an off-policy, model-free
actor-critic Reinforcement Learning (RL) algorithm that
follows the entropy-regularized RL framework. This frame-
work introduces the concept of entropy into the RL objec-
tive to encourage exploration. In particular, SAC tries to
learn (1) a soft Q-functionQω(·), (2) a soft state value func-
tion Vψ(·), and (3) a policy πη(·). Let st ∈ S denote the
state at timestep t. Vψ(·) is trained to minimize the MSE:

JV (ψ) =Est∼D[
1

2
(Vψ(st)−

E[Qw(st, at)− log πη(at|st)])2],
(A.1)

where D is the replay buffer. Qω(·) is trained to mini-
mize the soft Bellman residual:

JQ(ω) =E(st,at)∼D[
1

2
(Qω(st, at)−

(rt + γEst+1∼ρπ(s)[Vψ̄(st+1)]))
2],

(A.2)

where ρπ(s) denotes state marginal of the state distribution
induced by π, and Vψ̄’s parameters ψ̄ are updated by the
Exponential Moving Average (EMA) of ψ (or only gets up-
dated periodically) for training stability. Policy π is opti-
mized to maximize the expected return and the entropy at
the same time:

Jπ(η) =Est∼D,ϵt∼N [log πη(fπη
(ϵt; st)|st)−

Q(st, fπη
(ϵt; st))],

(A.3)

where ϵt is the input noise vector sampled from a stan-
dard Gaussian N , and fπη

(ϵt; st) denotes actions sampled
stochastically from πη(·). This sampling procedure is ac-
complished via the reparameterization trick proposed in [6].
Given its performance, SAC serves as a robust baseline for
continuous control tasks.

A.2. Deep Q-Network and Rainbow

Deep Q-Network (DQN) [7] is the first deep RL al-
gorithm that successfully learns control policies directly
from visual data, i.e., image-based observations. Facili-
tated by deep neural networks, it greatly improves the train-
ing procedure of Q-learning by using (1) an experience re-
play buffer for drawing samples and (2) a target Q-network
Qω′(·) to stabilize training. Qω′(·) shares the same ar-
chitecture with the Q-network Qω(·) and is kept frozen as
the optimization target every C steps, where C is a hyper-
parameter. Qω(·) is trained to minimize the mean square
error:

JQ(ω) =E(st,at,st)∼D[Qω(st, at)−
(rt + γmax

a
Qω′(st+1, a))

2].
(A.4)

Rainbow [4] is an enhanced DQN variant that amalgamates
multiple advancements into a unified RL agent, featuring
(1) double DQN [10], (2) prioritized experience replay [8],
(3) dueling networks [12], (4) multi-step return [9], (5) dis-
tributional RL as in [1], and (6) noisy layers [2]. By in-
tegrating these techniques, Rainbow is considered a robust
baseline for discrete control tasks.

B. MOOSS Implementation Details
B.1. Network Architecture

MOOSS-equipped RL framework consists of two parts:
(1) Modules that are necessary for the RL algorithms (SAC
and Rainbow), such as the Q-network Qω(·) and the obser-
vation encoder fθ(·); (2) Additional modules required by
MOOSS, i.e., the predictive decoder gϕ(·).

For the first part, we mainly adopt the implementa-
tions of SAC and Rainbow from [13] for fair comparisons.
Specifically, the observation encoder fθ(·) in SAC is built
from 4 convolutional layers with ReLU activations, fol-
lowed by a projection through a linear layer and normal-

1



Steps Model Reacher, hard Walker, run
100k Base 341 ± 275 105 ± 47
100k MOOSS 779 ± 379 164 ± 6
500k Base 669 ± 290 466 ± 39
500k MOOSS 980 ± 11 509 ± 25

Table A.1. Results on harder DMC tasks.

ization. Note that we use a state representation dimension
d = 64 instead of 50 to allow multi-head attention on gϕ(·).
On the other hand, in Rainbow, fθ(·) includes 3 convolu-
tional layers with ReLU activations, while the Q-learning
heads utilize a multilayer perceptron (MLP) design. These
observation encoders correspond to the query encoder de-
picted in Fig. 1 of the main paper, and the key encoder
fθ̄(·) adopts the identical architecture as fθ(·).

The additional predictive decoder gϕ(·), necessary for
MOOSS, comprises 2 transformer encoder layers, each with
4 attention heads. The causality of gϕ(·) is enforced us-
ing a causal attention mask. Actions at are converted into
action embeddings at ∈ Rd via a linear layer, and the po-
sitional encodings employed are the standard absolute sinu-
soidal positional encodings introduced in [11].

B.2. General Learning Settings

We mainly follow the training pipeline of [13] to train
MOOSS. As such, Adam [5] is used to optimize all trainable
parameters, and MOOSS is trained until reaching the desig-
nated maximum agent-environment interaction steps. The
hyper-parameters for DMC and Atari are listed in Tab. A.3
and Tab. A.4, respectively, with the bolded ones being
tuned for performance analysis. Notably, in Atari, few
games employ a masking ratio of pm = 10% and a temporal
window size ofL = 2 to enhance game performance. These
games typically feature small, fast-moving objects crucial
to success. For instance, Pong includes a small ping-pong
ball crucial for scoring points, while Gopher challenges
players to stop fast-moving gophers from eating carrots. As
discussed in the main paper, for games with fast-moving
objects, the high masking ratio of pm = 50% can lead to
excessive information loss, while an overly long contrastive
window, with L = 6, may become counterproductive. This
suggests that a large temporal window might encompass
states that are too similar, diminishing the effectiveness of
MOOSS in these scenarios.

C. Additional Experiments
C.1. Performance on Harder Tasks from DMC

In Tab. A.1, we extend our analysis by comparing
MOOSS with its Base model on two challenging tasks from
DMC: Reacher-hard and Walker-run. These tasks have not
been previously utilized to evaluate the sample efficiency of
visual RL algorithms. The results reveal that MOOSS con-
sistently enhances the performance on these difficult tasks

0 2 4 6 8
Temporal Window Size L

0

100

200

300

400

500

600

700

800
Mean
Median

0.1 0.3 0.5 0.7 0.9
Mask Ratio pm

0

100

200

300

400

500

600

700

800
Mean
Median

Figure A.1. Ablation on window size L and masking ratio pm.

Depth gϕ(·) Size Mean Median
1 63.27K 660.1 690.0

2 (ours) 113.25K 818.6 847.5
3 163.24K 695.8 753.5
4 213.22K 667.9 847.0

Table A.2. Ablation on decoder depth.

compared to the Base variant, underscoring our method’s
effectiveness. Notably, the performance improvements are
more pronounced at 100k steps, which is the low data
regime. This further highlights the benefits of modeling the
smooth evolution of states on sample efficiency.

C.2. Temporal Window Size and Masking Ratio

In this section, we examine how MOOSS’s key hyper-
parameters, i.e., temporal window size L and masking ra-
tio pm, affect its performance. The results in Fig. A.1 on
temporal window size present a trend where performance
initially fluctuates mildly, reaching a peak, and then de-
teriorates as the window size expands. This trend sug-
gests that the context provided by an overly large tempo-
ral window can be counterproductive. We argue that in
the case of a large L, for tasks involving repetitive actions
(such as Walker), states that are temporally distant may
also appear similar, leading to confusion and diminishing
MOOSS’s performance. We also find that pm = 50% is a
proper choice for MOOSS. This choice strikes a balance be-
tween challenging MOOSS to exploit spatial-temporal cor-
relations across observations for query generation, and re-
taining enough unmasked content to facilitate meaning-
ful learning. Such level of masking properly ensures that
MOOSS is neither overwhelmed by excessive information
loss nor under-stimulated by an abundance of visible data.

C.3. Ablation on Decoder Depth

In Tab. A.2, we study the effect of numbers of Trans-
former layers used in the decoder. We observe that the depth
of gϕ(·) is pivotal to MOOSS’s performance, with 2 emerg-
ing as the optimal choice. The result underscores the neces-
sity of a decoder with balanced power in MOOSS; it must
be sufficiently effective in reducing possible ambiguities in
masked state embeddings, but not so dominant as to usurp
the learning role of the observation encoder.



D. Discussion on Limitations

While effective, MOOSS’s performance gain on Atari
is relatively lower compared to DMC. Delving into this,
we observe that MOOSS does not perform as well in Atari
games featuring small, fast-moving objects crucial to suc-
cess, like bullets. This is particularly evident in games such
as Battle Zone, compared to its performance in other games.
This may be because MOOSS’s temporal contrastive objec-
tive becomes less effective in capturing drastic key changes
across states, and is further challenged by spatial-temporal
masking, which might result in excessive information loss.
Besides, MOOSS requires hyper-parameters that may need
additional tuning for different applications.

Additionally, we recognize that certain tasks may vio-
late MOOSS’s “gradually evolving state” assumption, as dis-
cussed in the Limitation Section. However, we first note
that in scenarios with frequent background changes (e.g.,
Hero from Atari), MOOSS proves advantageous as it guides
the encoder to filter out task-irrelevant background infor-
mation, thereby focusing on task-essential elements. Sec-
ond, while MOOSS does not inherently address fast mov-
ing agents algorithmically, this issue is mitigated by the ac-
tion repeat hyperparameter in RL algorithms. action repeat
is usually adjusted to a small value for environments with
rapid observation/agent changes (e.g., 2 for Spin vs. 8 for
Swing from DMControl), to stabilizes temporal state dy-
namics and thus enhances RL model performance. In
MOOSS, action repeat is not specifically tuned. Thus, given
MOOSS’s benefit from this mechanism, violations of grad-
ual state evolution assumption are likely rare.

References

[1] Marc G Bellemare, Will Dabney, and Rémi Munos. A dis-
tributional perspective on reinforcement learning. In Inter-
national conference on machine learning, pages 449–458.
PMLR, 2017. 1

[2] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot,
Jacob Menick, Ian Osband, Alex Graves, Vlad Mnih, Remi
Munos, Demis Hassabis, Olivier Pietquin, et al. Noisy net-
works for exploration. arXiv preprint arXiv:1706.10295,
2017. 1

[3] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. Soft actor-critic: Off-policy maximum entropy deep
reinforcement learning with a stochastic actor. In Interna-
tional conference on machine learning, pages 1861–1870.
PMLR, 2018. 1

[4] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom
Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal
Piot, Mohammad Azar, and David Silver. Rainbow: Com-
bining improvements in deep reinforcement learning. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 32, 2018. 1

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 2

[6] Diederik P. Kingma and Max Welling. Auto-encoding vari-
ational bayes. In 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, April 14-
16, 2014, Conference Track Proceedings, 2014. 1

[7] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex
Graves, Ioannis Antonoglou, Daan Wierstra, and Martin
Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013. 1

[8] Tom Schaul, John Quan, Ioannis Antonoglou, and David
Silver. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015. 1

[9] Richard S Sutton and Andrew G Barto. Reinforcement learn-
ing: An introduction. MIT press, 2018. 1

[10] Hado Van Hasselt, Arthur Guez, and David Silver. Deep re-
inforcement learning with double q-learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 30,
2016. 1

[11] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 2

[12] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc
Lanctot, and Nando Freitas. Dueling network architectures
for deep reinforcement learning. In International conference
on machine learning, pages 1995–2003. PMLR, 2016. 1

[13] Tao Yu, Zhizheng Zhang, Cuiling Lan, Yan Lu, and Zhibo
Chen. Mask-based latent reconstruction for reinforcement
learning. Advances in Neural Information Processing Sys-
tems, 35:25117–25131, 2022. 1, 2



Hyper-parameter Value

Frame stack (c/3) 3
Observation rendering (100, 100)
Observation downsampling (H ×W ) (84, 84)
Augmentation Random crop and random intensity
Replay buffer size 100000
Initial exploration steps 1000
Action repeat 2 Finger-spin and Walker-walk;

8 Cartpole-swingup;
4 otherwise

Evaluation episodes 10
Optimizer Adam
(β1, β2) (Except α) (0.9, 0.999)
(β1, β2) → (α) (temperature in SAC) (0.5, 0.999)
Learning rate for base RL modules 0.0002 Cheetah-run;

0.001 otherwise
Learning rate for MOOSS-specific modules 0.0001 Cheetah-run;

0.0005 otherwise
Learning rate warmup for MOOSS-specific modules 6000 steps
Learning rate 0.0001
Batch size for policy learning 512
Batch size for auxiliary task 128
Q-function EMA m 0.99
Critic target update frequency 2
Discount factor 0.99
Initial temperature 0.1
Target network update period 1
Target network EMA m 0.9 Walker-walk;

0.95 otherwise
State representation dimension d 64

MOOSS Specific Hyper-parameters

Weight of MOOSS loss λ 0.1
Sequence length F 16
Cube spatial size h× w 7× 7
Cube temporal length f 4 Cartpole-swingup and Reacher-easy

8 otherwise
Initial Contrastive temperature τ0 0.07
Contrastive temperature skip τl+1 − τl 0.075
Predictive decoder gϕ(·) depth 2
Random walk mask ratio pm 50%
Temporal window size L 6

Table A.3. Hyper-parameters used for DMC.



Hyper-parameter Value

Gray-scaling True
Frame stack (c/3) 4
Observation downsampling (H ×W ) (84, 84)
Augmentation Random crop and random intensity
Action repeat 4
Training steps 100k
Max frames per episode 108k
Reply buffer size 100k
Minimum replay size for sampling 2000
Mini-batch size 32
Optimizer, (learning rate, β1, β2, ϵ) Adam, (0.0001, 0.9, 0.999, 0.00015)
Max gradient norm 10
Update Distributional Q
Dueling True
Support of Q-distribution 51 bins
Discount factor 0.99
Reward clipping Frame stack [−1, 1]
Priority exponent, correction 0.5, 0.4 → 1
Exploration Noisy nets
Noisy nets parameter 0.5
Evaluation trajectories 100
Replay period every 1 step
Updates per step 2
Multi-step return length 10
Q-network: channels 32, 64, 64
Q-network: filter size 8× 8, 4× 4, 3× 3
Q-network: stride 4, 2, 1
Q-network: hidden units 256
Target network update period 1
EMA coefficient m 0

MOOSS Specific Hyper-parameters

Weight of MOOSS loss λ 0.1
Sequence length F 16
Cube spatial size h× w 7× 7
Cube temporal length f 4
Initial Contrastive temperature τ0 0.07
Contrastive temperature skip τl+1 − τl 0.075
Predictive decoder gϕ(·) depth 2
Random walk mask ratio pm 10% Gopher, Kangaroo,

Ms Pacman, Pong, Seaquest
50% otherwise

Temporal window size L 2 Gopher, Kangaroo,
Ms Pacman, Pong, Seaquest
6 otherwise

Table A.4. Hyper-parameters used for Atari.


	. Additional Backgrounds
	. Soft Actor Critic
	. Deep Q-Network and Rainbow

	. MOOSS Implementation Details
	. Network Architecture
	. General Learning Settings

	. Additional Experiments
	. Performance on Harder Tasks from DMC
	. Temporal Window Size and Masking Ratio
	. Ablation on Decoder Depth

	. Discussion on Limitations

