
Supplementary material
We provide in this Appendix some additional details to

understand our work:

• We provide more details on our experimental setting in
Sec. 7.

• We discuss how the Argoverse 2 Trust but Verify re-
lates to our problem in Sec. 8.

• We provide the detailed precision tables and qualitative
examples for our main results in Sec. 9.

• We study how the model behaves with exact map in-
puts in Sec. 10.

• We give pseudocode overviews of our two original
MapEX modules in Sec. 11.

• We give a figure of a query based onlline HDMap esti-
mation framework without MapEX modules in Fig. 4.

7. Detailed setting and codebase
We introduce here the detailed experimental details used

for our experiments along with in-depth explaination of
how existing maps are obtained for our various scenarios.
Our code is largely based on the official MapTRv2 code1,
and will be made available along with our standalone Map-
ModEX library on the MultiTrans project’s official github:
https://github.com/anr-multitrans.

Training details We largely reprise the 24 epochs train-
ing settings from our MapTRv2 [33] base, which were de-
scribed in the original paper as:

“ResNet50 is used as the image back- bone
network unless otherwise specified. The opti-
mizer is AdamW with weight decay 0.01. The
batch size is 32 (containing 6 view images) and
all models are trained with 8 NVIDIA GeForce
RTX 3090 GPUs. Default training schedule is 24
epochs and the initial learning rate is set to 6 × 10-
4 with cosine decay. We extract ground-truth map
elements in the perception range of ego-vehicle
following [...] The resolution of source nuScenes
images is 1600 × 900. [...] Color jitter is used by
default in both nuScenes dataset and Argoverse2
dataset. The default number of instance queries,
point queries and decoder layers is 50, 20 and 6,
respectively. For PV-to-BEV transformation, we
set the size of each BEV grid to 0.3m and utilize
efficient BEVPoolv2 [77] operation. Following

1https://github.com/hustvl/MapTR/tree/maptrv2

[16], λc = 2, λp = 5, λd = 0.005. For dense pre-
diction loss, we set αd, αp, αb to 3, 2 and 1 re-
spectively. For the overall loss, βo = 1, βm = 1,
βd = 1.”

Our own training setting solely differs from MapTRv2’s
in the fact that we train on 2 NVIDIA Quadro RTX 8000
GPUs. This in turn mean we need to reduce the batch size
by 4 and scale learning rates by 2 following standard scaling
heuristics for Adam optimizers [15].

Scenario 1 implementation We remove the divider and
pedestrian crossings from available HDMaps.

Scenario 2a implementation For each map element lo-
calization, we add noise from a Gaussian distribution with
standard deviation of 1 meter. This has the effect of ap-
plying a uniform translation to each map element (dividers,
boundaries, crosswalks).

Scenario 2b implementation For each ground truth point
- keeping in mind a map element is made up of 20 such
points - we sample noise from a Gaussian distribution with
standard deviation of 5 meters and add it to the point coor-
dinates.

Scenario 3a implementation We delete 50% of the
pedestrian crossings and lane dividers in the map, add a
few pedestrian crossings (half the amount of the remaining
crossings) and finally apply a small warping distortion to the
map. The warping distortion is composed of first trigono-
metric warping with horizontal and vertical amplitudes 1,
and inclination 3. We then perform triangular warping fol-
lowing a slightly perturbed grid where each point on the
regular grid is shifted according to random Gaussian noise
with standard deviation 1.

Scenario 3b implementation For each map, we draw a
uniform random value between 0 and 1. If it is below p=0.5
we keep the true HDMap, otherwise we perturb it in the
same way as in Scenario 3a.

8. On the Trust but Verify dataset

The Argoverse 2 Trust but Verify (TbV) dataset [27] of-
fers situations where the HDMap does not fit sensor inputs
for change detection. Unfortunately, it is not suitable for
our purposes it only says whether the current map fits sensor
data (yes or no) without giving the new map (see Sec. 3.3
of [27] or the associated code). Without the relevant ground
truth we cannot evaluate on it.

https://github.com/anr-multitrans
https://github.com/hustvl/MapTR/tree/maptrv2

Additionally, while TbV is an excellent dataset for
change detection, it unfortunately contains a limited num-
ber of real scenarios to train model for online HDMap ac-
quisition. Moreover, a number of the change scenarios are
indiscernible for our HDMap representation (e.g. change
in the type of divider). Interestingly, the limited number of
hand curated change situations is reserved for the valida-
tion and test sets with the train set generated from synthetic
data. Where TbV chooses to generate synthetic views that
differ from the available HDMap, we take the opposite view
of modifying the HDMaps. While this is likely less desir-
able for change detection, it is of no consequence for online
HDMap acquisition and much lighter computationally.

9. Fine grained results of map estimations

Tab. 6 provides a deeper look into the detailed results
of MapEX and sheds light on how the different types of
existing maps actually benefit the model.

Interestingly, the noisy Scenarios 2a and 2b seem to
help the model give a rough approximation of map elements
(good scores for retrieval thresholds of 1.5m) but are less
useful when it comes to predict very precise element local-
izations. As such, these scenarios appear to help the model
by providing a general idea of what the situation looks
like. Nevertheless, Scenarios 2a appears to still subtan-
tially improve the base MapTRv2 model for precise ele-
ment localizations at 0.5m (which is much lower than the
standard deviation of the added noise).

Conversely, when outdated map Scenarios 3a and 3b are
useful to predict map elements, they tend to provide fairly
precise element localizations (the gap between precision at
0.5m and 1.5m is lower). While these scenarios strongly im-
prove performance at all precision thresholds, the improve-
ment is also much larger for very precise element localiza-
tions. As such, they seem to work by providing a more
precise approximations of map elements.

Scenario 1 (with only boundaries) for its part shines by
providing near perfect estimations of map boundaries at all
levels: it properly identifies the provided road boundary
localizations as perfectly accurate and restitutes them as
is. Interestingly, it also provides significant gains in preci-
sion at all retrieval thresholds for lane dividers and pedes-
trian crossings even though the existing map has no infor-
mation on them.

10. Map change detection

We discuss here an additional module initially explored
for MapEX. We include this discussion here as this module
does not improve performance (and is therefore not an im-
proved version of MapEX), but sheds light on what happens
when perfect existing maps are available to the model.

10.1. Map change detector

There are a number of situations where fully accurate
HDMaps might be mixed in with the imperfect HDMaps
(e.g. our Scenario 3b). As such, we propose a lightweight
change detection module to leverage these situations.

We introduce a learned change detection query token and
perform cross-attention between this token and intermediate
map element queries at different stages of the decoder. This
token is then decoded by dense layer into a change predic-
tion c ∈ [0, 1] (with a sigmoid activation). At training time,
we train this token with a binary cross entropy loss (with
target ĉ = 1 if the map is not fully accurate and ĉ = 0 if it
is): we minimize

L = LBase + LBCE(c, ĉ), (3)

with LBase the loss of the base online HDMap estimator.
At test time, if no change is detected we output the exist-
ing HDMap instead of the prediction (and we output the
decoder predictions as usual if a change is detected).

Using the existing HDMap has two benefits: it provides
a very precise HDMap (something most methods struggle
with [11]), and it provides a way to stop the map estimation
process early. Indeed, returning the existing map removes
the need for further decoding of the query tokens which can
be expensive.

10.2. Processing accurate existing maps

We take a closer look at how MapEX deals with perfectly
accurate existing maps as it can sometimes happen in sce-
narios like Scenario 3b. To this end, we compare MapEX
to variants that use an explicit map change detection module
(described in Appendix 10) and substitute the predicted map
with the input existing map if no change is detected. Tab. 7
shows MapEX does not need a change detection module:
it recognizes and uses accurate existing map elements on
its own. In fact, training a change detection module jointly
with MapEX appears to deteriorate performance.

Table 7. Usefulness of the change detection module (Scenario
3b). MapEX seems to recognize and leverage existing maps with-
out the need for explicit change detection.

Method Average Precision at {0.5m, 1.0m, 1.5m}
APdivider APped APboundary mAP

MapEX 92.8± 0.1 87.2± 0.1 99.3± 0.2 93.1± 0.1
... w/ substitution 92.5± 0.3 87.3± 0.3 99.4± 0.1 93.0± 0.1
... w/ sub. & optimization 92.5± 0.2 87.2± 0.2 99.3± 0.1 93.0± 0.1

11. Pseudo code
We provide here pseudo code for our two additional

modules: the EX query encoding module (Alg. 1) and the
pre-attribution code (Alg. 2).

Table 6. Detailed table of retrieval Precisions at different thresholds for the main results. Reproduced scores for the base MapTRv2 model
are given for reference.

(a)

Method APdivider

Precision0.5
divider Precision1.0

divider Precision1.5
divider

MapTRv2 46.0 66.4 75.4
MapEX-S1 50.7± 0.3 69.6± 0.7 77.8± 0.6
MapEX-S2a 62 .8 ± 2 .1 83 .6 ± 1 .4 92.1± 1.3
MapEX-S2b 50.9± 3.0 77.5± 2.2 89.0± 1.0
MapEX-S3a 76.2± 0.5 86.6± 0.3 90 .8 ± 0 .3
MapEX-S3b 88.4± 0.5 93.8± 0.4 95.8± 0.2

(b)

Method APped

Precision0.5
ped Precision1.0

ped Precision1.5
ped

MapTRv2 34.5 65.1 78.8
MapEX-S1 38.8± 0.5 68.8± 0.5 80.0± 0.5
MapEX-S2a 46 .5 ± 0.5 85.5± 1.9 97.2± 0.4
MapEX-S2b 28.4± 0.5 72.3± 2.1 91 .7 ± 1 .8
MapEX-S3a 56.2± 0.4 79 .4 ± 0 .5 86.7± 0.7
MapEX-S3b 77.7± 0.5 89.9± 0.3 93.6± 0.3

(c)

Method APboundary

Precision0.5
boundary Precision1.0

boundary Precision1.5
boundary

MapTRv2 39.6 70.3 80.6
MapEX-S1 99.8± 0.1 99.8± 0.1 100.0± 0.1
MapEX-S2a 80.5± 0.9 96.4± 0.4 98.9± 0.2
MapEX-S2b 34.9± 0.2 75.8± 0.2 90.0± 0.3
MapEX-S3a 97.4± 0.3 99.9± 0.1 100.0± 0.1
MapEX-S3b 97.8± 0.4 99.7± 0.3 100.0± 0.1

Data: Map element
mEX = {(xEX

0 , yEX
0), . . . , (xEX

L−1, y
EX
L−1)}

of class c (among divider, crossing and
boundary).

Result: list query list of L H-dimensional EX
queries.

query list = [];
for i← 0 to L-1 do

/* Encode position */
pos vec = array([xEX

i , yEX
i]);

/* Encode class */
class vec = one hot(c, num class=3);
/* Build query */
pad vec = zeros(H − 5);
query i = concatenate([pos vec, class vec,
pad vec]);

query list.append(query i);
end
return query list;

Algorithm 1: Encoding map elements into EX Queries.

Sensor data

Lcls(,)
+ Lreg(,)

BEV Cross
Attn

Hungarian

Pred True

Optimize(; ;)

Figure 4. Overview of a classic query based framework. Sen-
sor data is encoded into BEV features, before being cross attended
with learned detection queries in a DETR-like scheme. The final
attended queries serve to predict coordinates and classes of map
elements. The model is trained using a Hungarian matching be-
tween predictions and ground truths.

Data: Predictions p = {pi}i=0,...,49, (Padded)
ground truths g = {gi}i=0,...,49,
correspondence list c = {ci}i=0,...,49 where
ci = −1 if there is no correspondence

Result: Assignment a = {ai}i=0,...,49 where ai is
the index of the ground truth associated to
the i-th prediction.

/* Split off pre-attributed pairs

*/
pp, gp, cp, pn, gn, cn, split inds = Split(p,g,c);
/* Perform Hungarian matching */
an = Hungarian(pn, gn);
/* Merge cp with an */
a = Merge(pp, an, split inds); return a;

Algorithm 2: Hungarian matching with pre-attribution.

