
Supplementary Material

A. Visualization of Post-GELU Activations

Figure 7. Box plots of block-wise post-GELU activations on (a)
ViT-B and (b) DeiT-S.

In Fig. 7, we illustrate the block-wise post-GELU value
distributions for ViT-B and DeiT-S through box plots.
These visualizations reveal a highly variant distribution
across different blocks, with the disparity between the max-
imum values of the 1st and 10th blocks in ViT-B reach-
ing up to a factor of 10. Additionally, the distribution no-
tably varies between models, as evidenced by the distinct
characteristics of the box plots for ViT-B and DeiT-S. This
variance underscores the need for data-driven quantization
approaches, as static, hand-crafted designs may not suffi-
ciently adapt to such diverse conditions. The limited adapt-
ability of existing methods like those documented in [30,32]
accounts for their varied performance on different models,
as shown in Tab. 1. Unlike these methods, our proposed
AutoScale is designed to dynamically adjust to various data
distributions, effectively preserving performance across di-
verse model architectures.

B. Comparison for Post-GELU Quantization
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Figure 8. Post-GELU values of 9th blocks of DeiT-S under 4-bit:
(a)(b) original, (c)(d) TSPTQ-ViT [32], (e)(f) AutoScale. Please
note that the histogram is displayed on a logarithmic scale.
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Figure 9. Post-GELU values of 11th blocks of ViT-S under 4-bit:
(a)(b) original, (c)(d) TSPTQ-ViT [32], (e)(f) AutoScale. Please
note that the histogram is displayed on a logarithmic scale.

To compare with the prior specialized quantizer,
TSPTQ-ViT [32], we visualize the distribution of quan-
tized values of DeiT-S (Fig. 8) and ViT-S (Fig. 9). Val-
ues in each color region are represented by a specific scal-
ing factor. While TSPTQ-ViT [32] divides values based on
magnitude, AutoScale divides them according to distribu-
tion, as mentioned in Sec. 3.2. Comparing the negative
post-GELU values in Fig. 8(c) and (e), TSPTQ-ViT [32]
shows only 3 bins with a scaling factor of 0.0693. In con-
trast, our method exhibits 4 bins with s0 ≈ 0.0515, indicat-
ing a higher precision. For the positive post-GELU values
shown in Fig. 8(d) and (f), while TSPTQ-ViT [32] allocates
4 bins to small positive values, the representative range is
significantly narrower than the complete spectrum of pos-
itive values. Moreover, the large scaling factor in [32] is
0.5544, resulting in a maximum quantized value of 3.8808,
much lower than the original maximum value of 12.4909.
Conversely, AutoScale employs a data-driven strategy to
determine the appropriate SF ratios among regions, select-
ing m0 = 3 and m1 = 5. This results in scaling factors
of s1 = s0 · 23 ≈ 0.4124 for small positive values and
s2 = s0 · 25 ≈ 1.6494 for large positive values. This ap-
proach expands the range of small positive values and ex-



tends the maximum quantized value to 11.5458, notably re-
ducing clamping loss.

Furthermore, in terms of adaptability, our method effec-
tively adjusts the scaling factors when applied to different
networks, as shown in Fig. 8(f) and Fig. 9(f). Since the pos-
itive values are more concentrated in ViT-S, our AutoScale
assigns smaller scaling factors for a more accurate represen-
tation. In contrast, TSPTQ-ViT [32] tends to apply similar
scaling across different scenarios, as shown in Fig. 8(d) and
Fig. 9(d).

To sum up, by assigning region-specific scaling factors
tailored to the data distribution, AutoScale effectively man-
ages the non-normal and variant distributions, thus enhanc-
ing the precision of the post-quantization values.

C. Ablation Study of Greedy MP Metric

Method W/A ViT-L DeiT-B Swin-B
FP 32/32 85.84 81.80 85.27

Single-precision 5/5 80.02 58.53 8.74
SQNR only (Eq. (11)) 5/5 83.46 75.50 9.82
Greedy MP (Eq. (10)) 5/5 83.61 76.44 41.69

Table 8. Ablation study of the selection metric of Greedy MP on
ImageNet dataset.

In this section, we evaluate the effectiveness of the se-
lection metric αXl , as introduced in Sec. 3.3. This metric
is designed to balance model performance and compress-
ibility, aiming for an optimal trade-off between these two
critical factors. To validate its effectiveness, we conduct an
ablation study by using SQNR only as the selection metric:

αXl = SQNRb−1(Xl). (11)

The comparison results in Tab. 8 reveal that employing
αXl solely based on SQNR results in diminished accuracy
compared to our approach that also considers compress-
ibility (Greedy MP). This outcome highlights the signifi-
cance of accounting for both performance and compress-
ibility when designing a selection metric. It is noteworthy
that using a metric based solely on the number of elements
per layer proves ineffective. Given the static nature of el-
ement counts, such an approach would bias the quantiza-
tion process towards consistently targeting the same layer,
disregarding the dynamic requirements of different layers.
By integrating both performance and compressibility fac-
tors into our Greedy MP method, we facilitate a more effec-
tive and balanced layer-wise bit-width allocation for quan-
tization.

D. Computation Time Analysis

Tab. 9 shows our calibration and inference times on the
NVIDIA GeForce RTX 4090, using the 50,000 ImageNet

Method State ViT-S ViT-B DeiT-S DeiT-B Swin-S Swin-B

TSPTQ-ViT [32] Calib. 16 23 12 15 29 32
Infer. 2.4 5.0 2.2 5.0 4.7 6.0

Ours Calib. 22 40 24 42 63 85
Infer. 2.4 5.2 2.2 5.2 4.8 6.3

Table 9. Computation time comparison (in minutes).

validation images for inference. While training takes sig-
nificantly longer, e.g., approximately 90 minutes per epoch
for ViT-B, our calibration time remains comparatively short
and acceptable. Specifically, Eq. (8) remains manageable
since m1 is small (typically less than 6), and the gradi-
ents required for the Hessian matrix are computed once and
reused throughout the search.

Importantly, our method doesn’t induce much inference
overhead. Note that SymAlign doesn’t introduce additional
storage or inference overhead since µ and ϵ can be inte-
grated into the weights, as detailed in Eq. (4) and Eq. (5).
This integration is conducted as an offline preprocessing
step before quantization and does not require recomputation
during inference. Moreover, we adopt layer-wise quantiza-
tion, avoiding the computational burden commonly associ-
ated with channel-wise methods, further enhancing the effi-
ciency of our model without compromising performance.

E. Comparison with Channel-wise Quantization

Method W/A ViT-S ViT-B DeiT-S DeiT-B Swin-S Swin-B
FP 32/32 81.39 84.53 79.85 81.80 83.21 85.27

RepQ-ViT [43] 4/4 65.05 68.48 69.03 75.61 79.45 78.32
Ours 4/4 55.88 61.84 68.43 76.14 77.20 76.51

Table 10. Top 1 accuracy on ImageNet dataset.

Tab. 10 presents a comparison with RepQ-ViT [43].
While RepQ-ViT [43] achieves notable performance, it em-
ploys channel-wise and asymmetric quantization, which
introduces additional storage overhead during inference.
In contrast, our approach utilizes layer-wise and sym-
metric quantization, significantly reducing overhead while
maintaining comparable performance, except for vulnera-
ble small-sized models, ViT-S and ViT-B.

F. Limitation of 4-bit Case

Achieving full quantization of ViTs to 4-bit, especially
for the Softmax operator, is highly challenging. This is
why most prior works just optimize the post-Softmax ac-
tivations but still retain the Softmax operator in floating-
point. In contrast, our approach utilizes the Int-Softmax
method [32, 36] for full ViT quantization, making it more
hardware-friendly but also increasing quantization diffi-
culty. We found that ViTs tend to collapse if the Int-
SoftMax layer operates under 4-bit, leading us to omit re-
sults under W4A4 mixed-precision. While keeping Soft-



max in floating-point, our solution outperforms others un-
der W4A4 single-precision, as shown in Tab. 1.

G. More Experimental Setting

For calibration, we randomly select 32 images from the
ImageNet dataset for classification and only 1 image from
the COCO dataset for instance segmentation. The candi-
dates of s0 are 100 equally spaced values by linearly divid-
ing [0, 1.2s], where s is set as max(|X|)/2b−1.

In Sec. 4.1.2, we choose TSPTQ-ViT [32] as our single-
precision baseline. To maintain model performance under
low bit-width quantization, we modify the hyperparameter
k in the K-means algorithm of O-2SF [32] from 2 to 4. Ex-
cept for this modification, we follow the same simulation
settings as in [32].

In Sec. 4.2, we quantize the inputs of FC1 while pre-
serving other layers in FP. In comparing ϵ, we find s0 by
MinMax quantization rather than Hessian guided metric to
align with [34].

In all experiments, Greedy MP refers to executing Al-
gorithm 1 without Line 1 (SymAlign) and Line 16 (Au-
toScale), which is used to evaluate the benefits of the greedy
MP strategy. As for AMP-ViT, we implement the entire Al-
gorithm 1.

H. SymAlign and Asymmetric Quantization

While asymmetric quantization is a viable approach to
handling asymmetry in model parameters, it is generally
less favorable for hardware implementation. This is due to
the additional online computations required for affine trans-
formations and the memory overhead needed to store zero
points. These factors can lead to inefficiencies, particularly
in resource-constrained environments.

To address this, our objective is to mitigate the asym-
metry issue within the framework of symmetric quantiza-
tion, which is inherently more hardware-friendly. Our ap-
proach involves an offline equivalent transformation applied
to linear operators, allowing for direct modification of the
weights before inference. This offline adjustment elimi-
nates the need for extra computational overhead during in-
ference, thereby retaining the efficiency advantages of sym-
metric quantization.

Additionally, since we integrate the bias term into the
weights, we apply SymAlign specifically to pairs of consec-
utive linear operators, as marked in Fig. 1. This approach
differs from asymmetric quantization, which is typically ap-
plied to the entire model.

I. Discussion of Actual Speedup and Memory Effi-
ciency

The primary goal of quantization is to address the lim-
ited I/O bandwidth and memory constraints of resource-
constrained edge devices. Therefore, in line with works

like NoisyQuant [39] and PD-Quant [31], we evaluate our
method by comparing the accuracy under various bit-width
against prior studies.

The actual speedup from quantization largely depends on
the choice of hardware. Linear operations can often be opti-
mized using single-instruction-multiple-data (SIMD) tech-
niques, whereas nonlinear operations may require special-
ized accelerators. Since our focus is on reducing the bit-
width of weights and activations, hardware-specific accel-
eration is outside the scope of this paper. However, regard-
ing memory efficiency, our layer-wise, symmetric quanti-
zation introduces minimal overhead and achieves 5.3× and
8× memory reductions for the 6-bit and 4-bit models.

J. Interchangeability of Algorithm 1

Figure 10. (a) Run the FP model to store the FP inputs (Al
FP ) of

each layer. (b) Loss calculation for layer 0. (c) Loss calculation
for layer 1.

In Algorithm 1, we quantize on a layer-by-layer basis.
Specifically, for each layer l, we preserve the raw inputs
Al

FP derived from FP models with weights of W l
FP , as

shown in Fig. 10(a). Next, we feed the raw input to the
target layer, quantize weights and activations under bW bits
and bA bits to get Ŵ l

bW
and Âl

bA
, and calculate the loss

between the quantized and raw outputs Al+1
FP , as shown in

Fig. 10(b) and (c). Consequently, from the viewpoint of ac-
tivations, the only change when swapping steps 2 and 3 is
the bit-width of weights (bw) shifting from the initial 8 bits
to a lower bit-width, with almost no impact on the search.
We also explored progressive quantization to consider the



cumulative quantization errors, resulting in a 2%∼5% drop
in accuracy. We attribute this to the overfitting of the cali-
bration dataset, a problem that has also been highlighted in
prior work [44].

K. More Comparison with FQ-ViT

In this section, we extend our analysis to include an 8-bit
comparison with FQ-ViT [36] under fully quantized ViTs,
as shown in Tab. 10. It is observed that our method con-
sistently outperforms FQ-ViT [36] across all model types,
achieving an accuracy degradation of less than 0.3% com-
pared to the FP models.

Method W/A ViT-B ViT-L DeiT-S DeiT-B Swin-S Swin-B
FP 32/32 84.53 85.84 79.85 81.80 83.21 85.27

FQ-ViT [36] 8/8 83.31 85.03 79.17 81.20 82.71 82.97
Ours 8/8 84.24 85.79 79.84 81.80 83.10 85.10

Table 11. Top 1 accuracy on ImageNet dataset.

L. Issue of Dataset Discrepancy

Typically, training and test data are assumed to follow
similar distributions, making PTQ viable by primarily an-
alyzing the training data alone. However, as the reviewer
rightly points out, discrepancies between these datasets can
occur in real-world scenarios. To address this issue, it is
possible for users to periodically update the parameters to
align with the new data distributions [45]. While this ap-
proach introduces additional overhead, users can adjust the
frequency of these updates to achieve an optimal trade-off
between computational cost and model performance.

M. Experiments on Large Language Models

Method W/A OPT-1.3B LLaMa-2-7B
FP 16/16 14.68 5.47

SmoothQuant [33] 8/8 14.79 5.51
Ours 8/8 14.75 5.51

SmoothQuant [33] 6/6 17.83 6.49
Ours 6/6 17.43 6.15

Table 12. Perplexity (↓) on WikiText2 dataset.

Similar to ViTs, transformers used in large language
models (LLMs) exhibit issues with activation asymmetry
during quantization. Consequently, we adapted the code
from [33] and implemented our SymAlign technique to
evaluate its effectiveness. The perplexity results (↓) under
8-bit and 6-bit quantization for the WikiText2 [46] dataset
are shown in Tab. 12. The results indicate that our method
successfully alleviates asymmetry and reduces perplexity,
especially in the 6-bit configuration. However, unlike ViTs,
which typically use GELU activation functions, these LLMs

employ alternative activations. Therefore, we expect that a
more tailored analysis accounting for the different proper-
ties of data and operators in LLMs will lead to further im-
provements.

N. More Comparison with OS+

Figure 11. L2 distance between µ and µr of (a) DeiT-B and (b)
ViT-S.

In Sec. 4.2, we have examined the representativeness of
µ by calculating the L2 distance between µ derived from
the entire calibration set and each µr obtained from indi-
vidual calibration samples. In this section, we extend the
analysis to additional models, as shown in Fig. 11. Con-
sistent with the findings in Fig. 4, our method consistently
achieves smaller L2 distances compared to OS+ [34], indi-
cating that SymAlign more effectively captures the general
characteristics of the dataset.
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