Self-Relaxed Joint Training: Sample Selection for Severity Estimation with Ordinal Noisy Labels –Supplementary Materials–

Algorithm 2 Proposed framework with JoCor [34]

1: Input: Dataset \tilde{D} , two networks f_1 and f_2 with initialized weights θ_1 and θ_2 , learning rate η , noise rate ϵ , epoch T' and T_{\max} , iteration t_{\max} , temperature τ ; for $T = 1, 2, ..., T_{\max}$ do 2: Shuffle training set \tilde{D} ; for $t = 1, ..., t_{\max}$ do 3: Fetch mini-batch \tilde{B} from \tilde{D} ; 4: Select clean samples from \tilde{B} by $\mathcal{L}_h^{\text{JoCor}}(with \tau)$; $\mathcal{B} \leftarrow \arg\min_{\mathcal{B}':|\mathcal{B}'| \geq R(T)|\tilde{\mathcal{B}}|} \mathcal{L}_h^{\text{JoCor}}(f_1, f_2, \mathcal{B}')$; 5: Derive soft labels l_s from l_h for $\mathcal{B}_1, \mathcal{B}_2$ by Eq.(3); 6: Update networks; $\theta_1 \leftarrow \theta_1 - \eta \nabla \mathcal{L}_s^{\text{JoCor}}(f_1, f_2, \mathcal{B})$; $\theta_2 \leftarrow \theta_2 - \eta \nabla \mathcal{L}_s^{\text{JoCor}}(f_1, f_2, \mathcal{B})$; end 7: Update $R(T) \leftarrow 1 - \min\{\frac{T}{T'}\epsilon, \epsilon\}$; end 8: Output: two trained networks with θ_1 and θ_2 .

A. Applying our framework to other jointtraining methods

In our paper, we detailed Algorihtm 1, where our framework is applied to Co-teaching [8]. However, our framework is versatile and can be applicable to other jointtraining methods, such as JoCor [34] and CoDis [36]. Algorithms 2 and 3 show the entire training procedure of "JoCor + Ours" and "CoDis + Ours," respectively.

Algorithm 2 of "JoCor + Ours" has a very similar structure as Algorithm 1; however, its loss functions $\mathcal{L}_h^{\rm JoCor}$ and $\mathcal{L}_s^{\rm JoCor}$ are different from \mathcal{L}_h and \mathcal{L}_s , respectively. JoCor [34] uses the common clean sample set \mathcal{B} for the two networks and introduces co-regularization to reduce divergence between the networks. Consequently, $\mathcal{L}_h^{\rm JoCor}$ becomes:

$$\mathcal{L}_{\mathrm{h}}^{\mathrm{JoCor}}(f_1, f_2, \tilde{\mathcal{B}}) = (\mathcal{L}_{\mathrm{h}}(f_1, \tilde{\mathcal{B}}) + \mathcal{L}_{\mathrm{h}}(f_2, \tilde{\mathcal{B}})) + \lambda \mathcal{L}_{\mathrm{reg}}(f_1, f_2, \tilde{\mathcal{B}}), \quad (6)$$

Algorithm 3 Proposed framework with CoDis [36]

1: Input: Dataset \hat{D} , two networks f_1 and f_2 with initialized weights θ_1 and θ_2 , learning rate η , noise rate ϵ , epoch T' and T_{\max} , iteration t_{\max} , temperature τ ; for $T = 1, 2, ..., T_{\max}$ do 2: Shuffle training set \hat{D} ; for $t = 1, ..., t_{\max}$ do 3: Fetch mini-batch \tilde{B} from \tilde{D} ; 4: Select clean samples from \tilde{B} by $\mathcal{L}_h^{\text{CoDis}}$ (with τ); $\mathcal{B}_1 \leftarrow \arg\min_{\mathcal{B}':|\mathcal{B}'| \geq R(T)|\tilde{\mathcal{B}}|} \mathcal{L}_h^{\text{CoDis}}(f_1, f_2, \mathcal{B}')$; $\mathcal{B}_2 \leftarrow \arg\min_{\mathcal{B}':|\mathcal{B}'| \geq R(T)|\tilde{\mathcal{B}}|} \mathcal{L}_h^{\text{CoDis}}(f_2, f_1, \mathcal{B}')$; 5: Derive soft labels l_s from l_h for $\mathcal{B}_1, \mathcal{B}_2$ by Eq.(3); 6: Update networks; $\theta_1 \leftarrow \theta_1 - \eta \nabla \mathcal{L}_s(f_1, \mathcal{B}_2)$; $\theta_2 \leftarrow \theta_2 - \eta \nabla \mathcal{L}_s(f_2, \mathcal{B}_1)$:

end
7: Update
$$R(T) \leftarrow 1 - \min\left\{\frac{T}{T'}\epsilon, \epsilon\right\};$$

end

8: **Output:** two trained networks with θ_1 and θ_2 .

where \mathcal{L}_{reg} is a regularization term:

$$\mathcal{L}_{\text{reg}}(f_1, f_2, \tilde{\mathcal{B}}) = \sum_{\{\boldsymbol{x}_i, \tilde{y}_i\} \in \tilde{\mathcal{B}}} J(\boldsymbol{p}_1(\boldsymbol{x}_i), \boldsymbol{p}_2(\boldsymbol{x}_i)), \quad (7)$$

and $J(\cdot, \cdot)$ denotes the Jeffrey divergence (i.e., the symmetrized Kullback-Leibler (KL) divergence). For updating the models with soft labels, "JoCor+Ours" uses the loss function \mathcal{L}_{s}^{JoCor} obtained by replacing \mathcal{L}_{h} with \mathcal{L}_{s} in Eq. (6).

Algorithm 3 of "CoDis + Ours" has a more elaborated structure than Algorithm 1; CoDis [36] uses possibly clean samples that have high discrepancy prediction probabilities between two networks, f_1 and f_2 . The proposed framework with CoDis selects small loss samples with the loss

Table 7. Classification results on <u>LIMUC</u> with <u>Truncated-Gaussian noise</u>. Following tradition, the test accuracy (Acc.), mean absolute error (MAE), and macro F1 (mF1) are averaged over the last ten epochs. The mean and standard deviations of five-fold cross-validation are shown. The best and second-best results are highlighted in red and blue, respectively. For plugin settings, improved results are shown by **bold**.

Method	Noise rate: $\epsilon = 0.2$			Noise rate: $\epsilon = 0.4$		
	Acc.↑	MAE↓	mF1↑	Acc.↑	MAE↓	mF1↑
Standard Sord [5] Label-smooth [23] F-correction [25]	$0.665 {\pm} 0.010$	$0.373 {\pm} 0.007$	$0.573 {\pm} 0.007$	$0.566 {\pm} 0.018$	$0.489{\pm}0.018$	$0.479 {\pm} 0.011$
	$0.708 {\pm} 0.009$	$0.309 {\pm} 0.010$	$0.632 {\pm} 0.015$	$0.632 {\pm} 0.016$	$0.389 {\pm} 0.019$	$0.564 {\pm} 0.024$
	$0.690 {\pm} 0.010$	$0.339 {\pm} 0.010$	$0.601 {\pm} 0.016$	$0.609 {\pm} 0.016$	$0.432{\pm}0.017$	$0.511 {\pm} 0.007$
	$0.670 {\pm} 0.009$	$0.362 {\pm} 0.010$	$0.585 {\pm} 0.010$	$0.609 {\pm} 0.008$	$0.430 {\pm} 0.008$	$0.529 {\pm} 0.010$
Reweight [18]	$0.667 {\pm} 0.006$	$0.371 {\pm} 0.008$	$0.573 {\pm} 0.013$	$0.575 {\pm} 0.008$	$0.477 {\pm} 0.008$	$0.494{\pm}0.013$
Mixup [9]	$0.676 {\pm} 0.008$	$0.359 {\pm} 0.005$	$0.583 {\pm} 0.011$	$0.605 {\pm} 0.012$	$0.449 {\pm} 0.015$	$0.490 {\pm} 0.013$
CDR [38]	$0.674 {\pm} 0.012$	$0.362 {\pm} 0.007$	$0.582{\pm}0.016$	$0.571 {\pm} 0.027$	$0.482{\pm}0.027$	$0.481 {\pm} 0.015$
Garg [7]	$0.657 {\pm} 0.054$	$0.433{\pm}0.146$	$0.447 {\pm} 0.128$	$0.525 {\pm} 0.040$	$0.786{\pm}0.121$	$0.267 {\pm} 0.015$
Co-teaching [8]	$0.698 {\pm} 0.002$	$0.332{\pm}0.004$	$0.610 {\pm} 0.012$	$0.646 {\pm} 0.020$	$0.393{\pm}0.023$	$0.544{\pm}0.023$
Co-teaching + Ours	0.731±0.005	0.289±0.005	$0.646 {\pm} 0.014$	$0.677 {\pm} 0.019$	$0.356{\pm}0.019$	$0.545{\pm}0.011$
JoCor [34]	$0.720 {\pm} 0.006$	$0.306 {\pm} 0.006$	$0.633 {\pm} 0.008$	$0.690 {\pm} 0.015$	$0.345 {\pm} 0.017$	$0.573 {\pm} 0.007$
JoCor + Ours	0.731±0.009	$0.287{\pm}0.010$	$0.642{\pm}0.018$	$0.678 {\pm} 0.016$	$0.353 {\pm} 0.017$	$0.549 {\pm} 0.009$
CoDis [36]	$0.694{\pm}0.004$	$0.336 {\pm} 0.005$	$0.609 {\pm} 0.013$	$0.622 {\pm} 0.012$	$0.418 {\pm} 0.013$	$0.530 {\pm} 0.014$
CoDis + Ours	0.723±0.005	0.294±0.006	0.639±0.017	0.684±0.012	0.342±0.015	0.581±0.028

Table 8. Results of <u>LIMUC dataset</u> with <u>Truncated-Gaussian noise</u> under different loss usages for sample selection and updating. The best and second-best results are highlighted in red and blue, respectively.

Selection	Updating	Noise rate: $\epsilon = 0.2$			Noise rate: $\epsilon = 0.4$		
		Acc.↑	MAE↓	mF1↑	Acc.↑	MAE↓	mF1↑
hard	hard	$0.698 {\pm} 0.002$	$0.332{\pm}0.004$	$0.610 {\pm} 0.012$	$0.646 {\pm} 0.020$	$0.393 {\pm} 0.023$	0.544 ± 0.023
soft	soft	$0.722 {\pm} 0.006$	$0.300 {\pm} 0.008$	$0.628 {\pm} 0.019$	$0.661 {\pm} 0.021$	$0.382{\pm}0.024$	$0.489{\pm}0.021$
hard	soft	$0.731 {\pm} 0.005$	$0.289 {\pm} 0.005$	$0.646 {\pm} 0.014$	$0.677 {\pm} 0.019$	$0.356 {\pm} 0.019$	$0.545 {\pm} 0.011$

Table 9. Results of private UC dataset with Truncated-Gaussian noise under different loss usages for sample selection and updating.

Selection	Updating	Noise rate: $\epsilon = 0.2$			Noise rate: $\epsilon = 0.4$		
		Acc.↑	MAE↓	mF1↑	Acc.↑	MAE↓	mF1↑
hard	hard	$0.788 {\pm} 0.009$	$0.236 {\pm} 0.008$	$0.599 {\pm} 0.031$	$0.702 {\pm} 0.022$	$0.328 {\pm} 0.020$	$0.490 {\pm} 0.036$
soft	soft	$0.809 {\pm} 0.007$	$0.209 {\pm} 0.006$	$0.611 {\pm} 0.028$	$0.721 {\pm} 0.030$	$0.318 {\pm} 0.030$	$0.442{\pm}0.038$
hard	soft	$0.815 {\pm} 0.010$	$0.202 {\pm} 0.008$	$0.621 {\pm} 0.035$	$0.748 {\pm} 0.031$	$0.282 {\pm} 0.033$	$0.491 {\pm} 0.032$

function:

$$\mathcal{L}_{\rm h}^{\rm CoDis}(f_1, f_2, \tilde{\mathcal{B}}) = \mathcal{L}_{\rm h}(f_1, \tilde{\mathcal{B}}) - \lambda \mathcal{L}_{\rm reg}(f_1, f_2, \tilde{\mathcal{B}}). \quad (8)$$

For updating the models with soft labels, "CoDis + Ours" uses the loss function \mathcal{L}_s .

B. Experimental evaluations under the Truncated-Gaussian noise

Table 7 shows the results on LIMUC [26] under the Truncated-Gaussian noise, simulating the case that ex-

perts make the mis-labelings between the neighboring labels. (Specifically, the i, jth element of the label transition matrix, P_{ij} , takes $1 - \rho$ for |i - j| = 1 and $P_{ij} = 0$ for |i - j| > 1.) Our methods ("* + Ours") outperform the others. Compared to the results under the Quasi-Gaussian noise, the individual accuracies in Table 7 are slightly lower, which is the same trend seen in the results on our private dataset in Section 4.2.

Tables 8 and 9 show how the combination of $\mathcal{L}_{\rm h}$ and $\mathcal{L}_{\rm s}$ is appropriate for learning with ordinal noisy labels un-

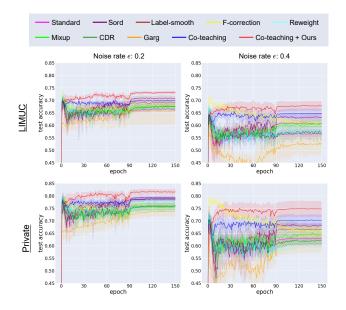


Figure 4. Test accuracy curves. The width of the shading indicates the standard deviation in cross-validation.

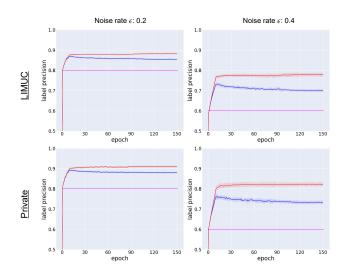


Figure 5. Label precision curves. The blue and red curves show the label precisions by "Co-teaching" and "Co-teaching + Ours," respectively. The pink horizontal line shows $(1 - \epsilon)$.

der Truncated-Gaussian. These tables show the results for LIMUC and the private dataset, respectively. The tendency of the results is almost the same as those under the Quasi-Gaussian noise, shown in Tables 4 and 5.

Fig. 4 shows the test accuracy curves for the individual methods on two UC datasets with Truncated-Gaussian noise. The comparative methods show a sharp increase in their test accuracy in early epochs. Then, the comparative models often start "memorizing" the samples with incorrect labels. Our method ("Co-teaching + Ours") could avoid the memorization effect. Fig. 5 shows the change in label precision on two UC datasets with Truncated-Gaussian noise. The backbone method is Co-teaching. The pink horizontal lines $(1 - \epsilon)$ indicate the label precision under random sample selection. Our method ("Co-teaching + Ours," the red curve) shows far better label precisions than random selection (pink line) and Co-teaching (the blue curve).

C. Code avalilability

We share our codes for experiments at https: //github.com/shumpei-takezaki/Self-Relaxed-Joint-Training.