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1. Theoretical analysis on consistency measure
of DASC

1Here we give the deriation of the consistency measure
of DASC. Suppose that two original views from SPT are
denoted as z1 and z2. And the objective of the local pixel-
wise contrastive learning is to minimize the distance of two
views before and after Encoder. Take z1 as an example,
which is written as

argmin
θ,o

Ep,T

[
∥Tθ (z1(p))−G (Tθ (z2(p)) ; o)∥22

]
=argmin

o
Ep

[
∥z′1(p)−G (z′2(p+ o))∥22

]
=argmin

o
Ep

[
∥z′1(p)−

∑
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G(q, p+ o) · z′2(q)∥22
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Ep

[
∥z′1(p)− z′2 (Γ(p+ o))∥22

]
where Tθ is Encoder, p is pixel index, o is offset, G is Grid
Sampling, S indicates interpolation locations, Γ is round
function, and ≜ suggests nearest-neighbor interpolation is
used for simplified derivation. Then the loss is given by

L(z′1, z
′
2; o) = ∥N (z′1(p))−N (z′2 (Γ(p+ o)))∥22

=
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∥∥∥∥2
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= 2− 2 · z′1(p)

∥z′1(p)∥2
· z′2 (Γ(p+ o))

∥z′2 (Γ(p+ o)) ∥2

where N represents the ℓ2 normalization. Hence, the op-
timization aligns with the cosine consistency measure, as-
sessing local semantic similarity and aligning pixel-wise lo-
cations. Meanwhile, the global loss measures high-level se-
mantic features. And integrating both losses improves the
model’s semantic learning and adaptability to distortions.
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2. More Ablation Studies

Different quantities of the labeled data in fine-tuning.
We conduct an ablation study by halving the downstream
task data, as shown in Table 1, which shows that our ap-
proach needs panoramic images for semantic segmentation
to learn the differences between them and planar images.
However, the mIoU of 51.53 (ours with half labeled data)
vs. 51.59 (supervised with whole labeled data) shows that
half labeled panoramic set in fine-tuning achieves compara-
ble results.

Ablation on loss weight λ. Apart from the loss design,
the loss weight λ is also needed to perform the ablation
study. The results are shown in Table 2. We can observe
that using smaller or larger weight will lead to the perfor-
mance degradation of the proposed DASC-SPT model, and
thus we choose λ = 2 as the best setting.

Ablation on center crop mode in SPT. We have also
conducted the ablation study on the mode of center crop
operation. The results are shown in Table 3, including the
random crop operation, the center crop operation with dou-
ble areas and the center crop operation we used in this paper.
As shown in the Table, expanding the center crop area in-
troduces uninformative background, while the random crop
can create views lacking information, which both illustrates
the decrease of the accuracy.

Comparison for training costs. We give the compar-
ison for training costs of our approach and the baseline
shown in Table 4, which demonstrates a slight increase
in GFLOPs of our approach due to DASC incorporating
consistency. Besides DASC, the projection calculation of
our porposed SPT strategy also increases pretraining time.
Overall, adding the extra training costs in our proposed ap-
proach is worthwhile because it can lead to greater perfor-
mance gains.

Ablation on the frozen backbone in downstream task.
The ablation study is conducted to compare using a frozen
backbone versus a non-frozen backbone, and the results are
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Table 1. Different Quantities of the Labeled data.

Method Quantity mAcc mIoU

Supervised half 60.52 44.61
Ours half 66.27 51.53

Supervised all 66.14 51.59
Ours all 73.02 60.76

Table 2. Ablation study on loss weight λ.

λ mAcc mIoU

0.5 72.23 59.67
1.0 73.02 60.76
2.0 73.03 60.23

Table 3. Ablation study on the Crop mode.

Mode mAcc mIoU

Random Crop 69.56 56.94
Center Crop (x2) 71.92 59.77

Center Crop (Ours) 73.02 60.76

Table 4. Ablation Study on Training costs.

Method GFLOPs Time/iter

Baseline 1049 609ms
Ours 1129 1066ms

Table 5. Ablation study on the Frozen backbone.

Backbone mAcc mIoU

Frozen 71.52 58.25
Unfrozen (Ours) 73.02 60.76

shown in Table 5. From the table, we can conclude that the
method with the frozen backbone learns good representa-
tions with only a slight decrease, as what we have expected
before, which we ascribe to the differences between distor-
tions learning and segmentation.

3. Detailed Results on Three Datasets
We report the overall results in the main paper. To further

demonstrate the effectiveness of our method processing the
distortions on panoramic images, we include more detailed
results between our method and different self-supervised
approaches on three datasets in Table 6, 7 and 8. It can
be observed that our method achieves the best results on all
three datasets (e.g., 2.63% on mIoU higher than the second-

best method PPS [7] in Table 6). Besides, our method
achieves the highest mIoU results on the majority of indi-
vidual categories. Even for some challenging categories,
our method also achieves satisfactory performance (e.g., LT
in SUN360 in Table 6 and CH in Standford2D3D in Table
8). Due to the SPT module, our method could introduce
more distortions in the pretraining stage and could learn
more consistency from the paired views based on the DASC
framework. Therefore, these detailed results verify the pro-
motion of our method is statistically significant.

4. More Qualitative Results
In this section, we provide more qualitative results be-

tween the baseline and our proposed DASC-SPT. As shown
in Figure 1, our method could produce more superior masks
against baseline from an overall perspective. Specifically,
the baseline may suffer from the distortions on panoramic
images and the texture-closer semantic categories, thus pro-
ducing incomplete semantic masks (e.g., the 3rd row and
the 4th row of Figure 1) and incorrect dense predictions
(e.g., the 1st row and the 6th row of Figure 1). As a compar-
ison, our framework DASC based on the SPT could further
leverage the shared content and discrepancies caused by dif-
ferent distortions of the paired views, which could produce
more accurate dense predictions. Even in complex scenes
having severe distortions and large differences in scale (e.g.,
the 4th row of Figure 1), our DASC-SPT still produces sat-
isfactory results (e.g., the window), demonstrating the ro-
bustness of our method.



Table 6. Detailed comparisons with different self-supervised approaches on SUN360 dataset. The abbreviations for the following categories
represent: Bed (BD), Painting (PG), Table (TB), Mirror (MR), Window (WN), Curtain (CT), Chair (CH), Light (LT), Sofa (SF), Door (DR),
Cabinet (CB), Bedside (BS), TV, Shelf (SH).

Method BD PG TB MR WN CT CH LT SF DR CB BS TV SH mAcc mIoU

Supervised 70.7 63.9 43.5 38.0 56.7 72.9 34.5 64.1 53.0 56.3 36.4 55.6 66.7 10.1 66.1 51.6

MoCov2 [6] 73.8 72.8 53.8 49.8 58.3 73.2 37.9 60.2 62.4 60.4 40.1 59.1 68.8 13.2 69.2 56.0
SimCLR [2] 73.8 69.7 51.4 53.1 53.7 73.8 33.9 61.8 58.1 59.2 38.6 63.3 67.7 28.7 69.8 56.2
BYOL [5] 58.5 55.4 34.8 22.5 44.0 69.8 18.0 30.1 45.1 46.7 25.2 34.4 46.1 8.0 51.3 38.5
DenseCL [8] 75.2 73.2 53.5 49.9 57.6 72.6 37.8 67.1 62.9 59.8 38.4 66.3 72.0 12.4 70.1 57.1
Barlowtwins [9] 67.8 60.3 43.0 35.4 47.5 71.2 28.9 53.8 51.6 50.5 30.4 45.6 59.9 10.9 61.3 46.9
SimSiam [3] 76.9 70.7 52.5 50.0 61.1 73.9 33.8 76.2 60.7 62.3 41.4 65.0 70.0 12.7 70.4 57.6
VICRegL [1] 73.1 70.4 52.7 47.4 58.8 72.5 33.5 62.8 58.9 57.4 35.8 57.3 67.7 12.1 69.1 54.3

360VAM [4] 69.6 65.3 46.2 49.3 56.8 72.9 28.8 57.4 54.7 58.8 37.4 49.0 62.9 8.5 65.1 51.3
PPS [7] 77.5 73.4 53.3 51.4 61.3 75.1 36.6 67.1 63.4 63.0 40.0 62.0 71.4 18.3 71.4 58.1

DASC-SPT 77.3 74.2 57.8 54.7 60.6 74.5 39.3 70.7 65.5 63.9 45.1 70.5 73.2 21.2 73.0 60.8

Table 7. Detailed comparisons with different self-supervised approaches on CVPG-Pano dataset.

Method Flat Construction Object Nature Sky Person Vehicle mAcc mIoU

Supervised 97.8 90.4 46.9 86.0 98.8 41.0 85.7 83.3 78.1

MoCov2 [6] 98.0 90.7 48.8 85.3 98.9 41.3 87.3 83.8 78.6
SimCLR [2] 97.8 90.0 42.7 85.8 98.8 35.8 85.4 82.3 76.6
BYOL [5] 96.9 87.2 29.9 84.0 98.6 18.1 78.5 75.4 70.4
DenseCL [8] 97.9 90.5 48.3 85.3 98.8 39.5 86.4 83.9 78.1
Barlowtwins [9] 97.6 89.0 37.9 84.6 98.7 32.8 83.4 79.9 74.9
SimSiam [3] 98.0 91.2 51.8 86.7 98.9 46.9 88.4 85.2 80.3
VICRegL [1] 97.9 90.3 43.1 85.6 98.8 31.4 85.3 80.8 76.0

360VAM [4] 97.7 89.7 44.2 85.1 98.8 32.7 85.1 81.8 76.2
PPS [7] 98.1 91.1 47.7 86.3 98.9 40.1 86.8 83.4 78.4

DASC-SPT 98.1 91.3 53.2 86.3 98.9 48.7 88.6 86.3 80.7
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Table 8. Detailed comparisons with different self-supervised approaches on Standford2D3D dataset. The abbreviations for the following
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(FL), Sofa (SF), Table (TB), Wall (WL), Window (WN).

Method BD BK BM CG CH CT CN DR FL SF TB WL WN mAcc mIoU

Supervised 65.8 56.6 0.7 70.9 47.8 24.3 10.2 17.3 92.2 19.9 54.5 69.8 35.0 50.4 40.4

MoCov2 [6] 69.0 57.2 0.2 71.2 51.3 25.2 9.4 22.6 90.9 19.5 45.9 69.9 38.4 50.5 40.9
SimCLR [2] 68.2 53.2 0.2 69.8 46.9 24.2 10.8 21.6 92.7 13.8 48.5 67.3 44.6 49.5 40.2
BYOL [5] 63.1 50.7 0.6 70.4 39.1 22.7 5.1 17.2 90.3 11.3 46.8 67.3 40.3 46.9 37.6
DenseCL [8] 68.0 57.3 0.1 68.9 49.6 25.3 10.7 32.2 92.4 25.4 51.9 70.4 42.6 51.7 42.6
Barlowtwins [9] 65.2 52.8 0.5 71.3 44.8 24.0 10.8 24.7 90.6 14.9 47.3 67.5 38.1 49.1 39.5
SimSiam [3] 72.0 56.9 0.1 71.0 51.0 24.7 8.4 24.7 92.3 31.9 54.2 71.2 38.6 51.4 42.7
VICRegL [1] 67.9 55.2 0.0 71.2 47.7 22.7 8.3 27.7 92.6 21.4 52.1 68.6 36.1 49.6 41.0

360VAM [4] 66.4 53.8 0.3 72.1 46.8 24.7 8.5 18.0 91.9 17.4 49.8 69.0 42.8 49.3 40.2
PPS [7] 69.2 58.1 0.1 71.9 54.0 25.9 11.0 24.7 92.1 23.8 55.1 71.1 37.1 52.0 42.6

DASC-SPT 70.3 57.1 0.2 71.1 53.6 24.8 11.1 25.2 91.3 31.9 53.5 68.7 40.1 52.3 43.0

(a) Images (b) Ground Truth (c) Baseline (d) DASC-SPT

Figure 1. More qualitative results are provided between the baseline (SimSiam) and our proposed DASC-SPT approach.
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