
S1. Supplementary Material
In this section we provide supplementary materials.

S1.1. More visualizations

This section we demonstrate more visualizations of the
input feature sensitivities. The parameter sensitivity visu-
alization are not shown further due to the abstraction and
complexity.

MNIST. The visualization of the input feature sensitivi-
ties for the MNIST handwritten dataset is illustrated in Fig.
S4. It can be observed that the sensitivities of the explain-
ability methods, except for GradCAM, are highly consistent
with the prediction. This is consistent with the conclusions
from the quantitative evaluation of this dataset in Sec. 4.2.

GTSRB. The sensitivity visualization for the GTSRB
dataset is shown in Fig. S5. The sensitivity consistency
of VB drops dramatically for this relatively more complex
dataset and model, where its sensitivity map encompasses
almost all input features. Similarly, the sensitivity maps of
LRP and GradCAM fail to match the predictions, where
the vast majority of the sensitive features of LRP are fo-
cused on the background, while GradCAM provides almost
no feedback on feature perturbations. GB,IG and DeepLift
maintain a relatively stable performance, with their sensi-
tive areas mainly concentrated on the arrow symbols of the
signboard, which is consistent with the sensitivity area of
the prediction.

S1.2. Presentation of more experimental results

This section we show more experimental results, includ-
ing the Top-k evaluation of the data SenC (Fig. S1). Also,
we show the Top-1 and Top-3 agreement results for Ima-
geNet in Fig. S2.

S1.3. Masking rate selections

The mask coverage is an adjustable hyperparameter
when generating masks. Lower masking rates represent that
the vast majority of the values on the matrix are retained,
and conversely, the majority are perturbed. We find that
the appropriate masking rate depends on the complexity of
the model and data. As shown in Fig. S3, when experi-
menting on the simply structured MNIST dataset, we found
that the optimal masking rate is between [0.2,0.6]. This
is because a too high masking rate for MNIST may com-
pletely obscure the numbers and prevent the model from
making predictions, while a too low masking rate makes
it almost difficult to obscure the numbers, resulting in the
model making almost constant predictions. However, the
situation changes on ResNet18 and MobileNetV3, mainly
due to the increased image complexity. It can be observed
that as the complexity of the dataset increases, the perfor-
mance of low masking gets significantly better and even

exceeds that of high or medium masking. This is because
the basis on which the model makes decisions grows richer,
and masking some of the features may still be ineffective in
interfering with the model predictions. Therefore, we rec-
ommend choosing an appropriate masking rate based on the
complexity of the data and model.

S1.4. Layer-wise parameter SenC evaluation

This section we show the layer-wise parameter SenC for
various models on different datasets.

MNIST. The layer- wise parameter SenC of MNIST can
be seen in Fig S6. Since ModelCNN is simple in structure
and contains only 4 layers, we exhibit the evaluation results
for all layers. The sensitivity consistency of the first two
convolutional layers is relatively high for all explainability
methods, with IG having the best performance and Grad-
CAM the lowest. For the last two fully connected layers,
the explainability approaches are still slightly more consis-
tent than the randomly masked baseline, despite the obvi-
ous gap with the convolutional layers. We believe that on
the one hand fully connected layers cannot extract local fea-
tures like convolutional layers such that the channels are not
well-defined, and on the other hand fully connected layers
are more tightly connected between channels and are more
vulnerable to hard perturbations.

CIFAR-10. The layer-wise parameter SenC of
ResNet18 trained on CIFAR-10 is displayed in Fig. S7. The
structure of ResNet18 is complicated, therefore we only
present the first convolutional layer, the last fully-connected
layer and the intermediate layer belonging to “layer1”. It
can be observed that LRP and GradCAM almost collapse,
with their consistency not differing significantly from the
randomly masked baseline. In contrast, IG and DeepLift
still maintain outstanding consistency, especially on layer
conv1 and layer1.0.conv1, remarkably outperforming ran-
domized baselines and other explainability methods.

GTSRB. The layer-wise parameter SenC of ResNet18
trained on CIFAR-10 is displayed in Fig. S8. We select the
two convolutional layers in the first feature module and the
last two fully connected layers of the final classifier for eval-
uation. The results are analogous to CIFAR-10, with IG and
DeepLift outperforming the rest of the explainability meth-
ods, especially DeepLift, which still achieves an average
SenC of more than 0.25 for the first two layers. Again, VB,
LRP, and GradCAM exhibit almost no superior consistency
over randomized explanations, increasing concerns that the
identical parameter plays different roles in explanations and
predictions.

S1.5. Processing time analysis

The processing times of SenC on each model are dis-
played in Table S1. The experiments are performed on an
NVIDIA A100 GPU with the same number of perturbation



Figure S1. From up to bottom are Top-1 and Top-3 agreement, respectively. The x-axis in all plots represents different explainability
methods. The y-axis in agreement indicates percentages. In Top-1 agreement, larger proportion of 1.0 (orange) fractions signify a higher
percentage of agreement on the most sensitive features (better). In Top-3 agreement, higher percentage of darker color sections indicates
better agreement.

Figure S2. Top-1 and Top-3 evaluation results for ImageNet.

masks for both data and parameters of 5000 and 10000. We
admit that SenC requires a significant amount of time to
compute, especially for models with more complex struc-
tures such as ModelNetV3. However, at this stage, per-
turbations are the only way to analyze the relationship be-
tween explanations and predictions, since both models and
explainability methods are themselves somewhat agnostic.



Figure S3. Impact of the masking rate on the evaluation results of different models. We show VB as examples, masking 10% to 90% of
the parameters as perturbations for the same set of inputs, respectively, and recording the results of the final evaluation.

ModelNetCNN ResNet18 MobileNetV3
Data SenC 12.21± 0.37 46.14± 1.82 99.80± 1.91

Parameter SenC
(per layer) 36.05± 0.33 186.95± 2.74 503.35± 9.59

Table S1. Processing time (second) of data and parameter SenC on ModelNetCNN,ResNet18 and MobileNetV3 respectively.

Figure S4. Visualization of input feature sensitivity for MNIST
datasets.

Figure S5. Visualization of input feature sensitivity for GTSRB
datasets.



Figure S6. Layer-wise parameter sensitivity consistency assessment of ModelCNN trained on MNIST dataset. The x-coordinates are the
different explainability methods, the y-coordinates are the Spearman correlation coefficients for the parameter sensitivities, and each box
in the figure represents a specific layer.

Figure S7. Layer-wise parameter sensitivity consistency assessment of ResNet18 trained on CIFAR-10 dataset.



Figure S8. Layer-wise parameter sensitivity consistency assessment of MobileNetV3 trained on GTSRB dataset.
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