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1. Other Baseline Methods
In this section, we give the details of all other baseline

methods used in the paper.

1.1. Rule-based Abductive Past Action Inference

In abductive past action inference, we assume the fol-
lowing logical association holds,

{a1, a2, a3, · · · , aK} → {R1, R2, · · · , RN} (1)

where {R1, R2, · · · , RN} is the relation set R present in an
image and {a1, a2, a3, · · · , aK} is the action set A executed
by the human to arrive at the image. Note the set of all
actions is denoted by A where A ⊂ A.

In rule-based inference, each relation is in the symbolic
form Rk =< H, ok > where H and ok are the human fea-
ture and kth object label in the image. As the human fea-
ture is common in all relations, we omit the human feature
in each relation. Then, the relational association is updated
as follows:

{a1, a2, a3, · · · , aK} → {o1, o2, · · · , oN} (2)

for any image. In rule-based abductive past action set in-
ference, for each given object pattern {o1, o2, · · · , oN},
we count the occurrence of each action aj . Let us de-
note the frequency of action aj for object pattern Oq =
{o1, o2, · · · , oN} from the entire training set by Cq

j . There-
fore, for each object pattern Oq , we obtain a frequency vec-
tor over all past actions denoted by:

Cq = [Cq
1 , C

q
2 , · · · , C

q
|A|] (3)

Then, we can convert these frequencies into probabilities
using softmax:

P (A|Oq) = softmax([Cq
1 , C

q
2 , · · · , C

q
|A|]) (4)

We use this to perform abductive past action set inference
using the test set. Given a test image, we first obtain the ob-
ject pattern O. Next, we obtain the action probability vector

Figure 1. (left) The relational multi-head self-attention trans-
former. (right) The relational cross-attention transformer.

for the object pattern from the training set using Equation 4.
If an object pattern does not exist in the training set, we as-
sign equal probability to each action.

1.2. Relational MLP

The MLP consists of 2-layers. The human feature xh,
object feature xo, and union region of both human and fea-
ture xu obtained from the ResNet-101 FasterRCNN back-
bone are concatenated to form the joint relational visual fea-
tures xv . The semantic representation ys is formed via a
concatenation of the Glove [6] embedding of the human
yh and object yo. We perform max pooling on the rela-
tional features, Ri = r1, r2, ..., rn in a given image, where
each rn = [xv, ys] is the concatenation of visual and se-
mantic features. Afterward, we pass these features into the
2-layer MLP. The inputs and outputs of the first layer are
D-dimensional and we apply dropout with p = 0.5. The last
layer of the MLP is the classification layer. Lastly, we apply
a sigmoid function before applying multi-label margin loss
to train the model.

1.3. Relational Transformer

Transformers [11] are a popular class of models in deep
learning. They are effective at capturing relationships be-
tween far-apart elements in a set or a sequence. In this work,
we use transformers as a set summarization model.
Multi-head self-attention Transformer: Specifically, we uti-
lize a multi-head self-attention (MSHA) transformer model.
The MHSA transformer contains one encoder and three de-
coder layers by default. We do not use any positional en-
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Figure 2. The context description and the textual prompt used for
the GPT-3.5 turbo model.

coding as we are summarising a set. Given the set of rela-
tional representation of an image Ri = r1, r2, · · · , rn, the
transformer model outputs a Tensor of size n×d where d is
the size of the relational representation. Afterward, we use
max-pooling to obtain an image representation vector xr. A
visual illustration of this model is shown in Fig. 1 (left).
Cross-attention Transformer: Similar to the multi-head
self-attention transformer, we use one encoder and three de-
coder layers. The inputs to the transformer encoder com-
prise concatenated visual and semantic features of a human
and objects [xh, yh, xo, yo], excluding the union features
xu.

1.4. Relational GPT-3.5 Past Action Inference

GPT and later versions [1, 8, 9] have revolutionized the
AI field by solving many natural language processing and
reasoning tasks. Here, we use the GPT-3.5 turbo version
to perform abductive past action inference. To do this, we
generate a query prompt as well as a contextual descrip-
tion for each image using the ground truth relational an-
notations based on the subject-predicate-object triplet rela-
tion. In contrast to the all other methods, we utilize the
ground truth predicate label for GPT-3.5. An example of
the contextual description and textual prompt is shown in
Figure 2. In addition, an answer generated by GPT-3.5 is
shown in Figure 3. We specifically created the prompt such
that GPT-3.5 responses are constrained to the ground truth
action sets within the dataset. Based on the responses from
the GPT-3.5 model, we construct the score vector where the
predicted action is marked with a score of 1 or 0 otherwise.
We call this hard matching as we add 1 if and only if the
GPT-3.5 model outputs the exact action class name given in
the input prompt.

The GPT-3.5 model is able to generate reasonable an-
swers in some images (see Fig 3). However, most of the
time GPT-3.5 answers are either overly conservative or ag-
gressive. For example, GPT responds “There is not enough
information given in the context to determine the specific
actions the person executed to arrive in the described state”
and in some instances, it selects all action classes. This may

Figure 3. Answer generated by GPT-3.5 turbo model. The correct
answers are shown in green color whereas false positives and neg-
atives are shown in red. This example is cherry-picked.

be the main reason for the poor performance of GPT-3.5.
However, it should be noted that the GPT model is fed with
more information than all other baselines as we also provide
the predicate relation to the GPT-3.5 model. We also note
that the GPT-3.5 + CLIP (Text) model with both soft and
hard scores performs better than the hard score method. As-
suming that large language models such as GPT-3.5 are ca-
pable of human-like reasoning, we can perhaps suggest that
abductive inference requires more than text-based reasoning
and commonsense reasoning. Given the fact that pure rule-
based inference performs better than GPT-3.5 with lesser
information may suggest that GPT-3.5 is not suited for ab-
ductive past action inference due to it not having a detailed
understanding of some of the human behaviors and effects
of human actions.

1.5. VILA Fine-tuning for Past Action Infernce

With the proven success of Large Language Models
(LLMs) across various NLP tasks, recent research has ex-
tended their capabilities towards vision tasks, resulting
in the development of Visual Language Models (VLMs).
These models are typically enhanced through prompt-
tuning (where LLMs are frozen) or fine-tuning methods.
We employ a fine-tuned VLM, VILA [4], which has not
only advanced state-of-the-art performance in vision tasks
but also retains robust capabilities in text processing. VILA
demonstrates strong reasoning abilities in multi-image anal-
ysis, contextual learning, and zero/few-shot learning scenar-
ios. Hence, we leverage VILA for the task of abductive past
action set inference.

2. Details on Dataset Creation
How to generate action sets and sequences? To obtain
the ground truth action set A for an image in the Action
Genome dataset using the Charades action labels, we first
compute the time t for each individual frame within a video
sequence by using the formula: t = vd

n , where vd and n
denote the video duration and the number of frames in the
video respectively. Then, we multiply the current frame
number fn with t to obtain the current time, tc = t× fn.
Action sets: As each video contains multiple actions, we



Figure 4. Number of snapshots (in log2) for sets of n past actions
in the Action Genome test set. (a) – Abduct at T , (b) – Abduct last
snapshot

check whether the current time of the frame tc, falls within
the start ts and end te time of the action. If it does, we
add the ground truth action label to the action set An for
the image. To obtain the ground truth action set for the tth

image, we combine all previous action sets from t = 1 up
to and including the tth image to form the set.
Action sequences: We sort the start time ts of the actions
contained in the video in ascending order. Then, for each
image, if the current time of the frame is greater than the
start time of the action (tc ≥ ts), we add it to the sequence.

We provide details on the number of images for a set of
n past actions in the AG dataset for these setups in Figure 4.
As can be seen from these statistics, the majority of the im-
ages have more than five actions and some images have as
many as 26 actions.

3. Implementation Details
We use FasterRCNN [10] with a ResNet-101 [3] back-

bone to extract human and object features from each image
based on the ground truth person and object bounding boxes
provided by AG for all object-relational models. We load
pre-trained weights provided by [2] that were trained on the
training set of AG which obtained 24.6 mAP at 0.5 IoU with
COCO metrics. The parameters of the FasterRCNN during
training and inference are fixed for the abductive past action
inference task. Our default human and object visual repre-
sentations have 512 dimensions obtained from 2048 dimen-
sional visual features from the FasterRCNN. We use linear
mappings to do this. During training, we train the mod-
els for 10 epochs and set the batch size to 1 video (there
are many frames in a video). We assume the frames are
i.i.d. Note that even though there are multiple images in a
batch, the images are processed in parallel and individually
for the transformer and graph models respectively. There
is no sharing of information between images. We use the
AdamW [5] optimizer with an initial learning rate of 1e-5
along with a scheduler to decrease the learning rate by a fac-
tor of 0.5 to a minimum of 1e-7. We utilize Glove [6] word
embedding of size 200 for the human and object seman-
tic features. In addition, gradient clipping with a maximal
norm of 5 is applied. Moreover, we report the mean across 3
different runs for each configuration to ensure we report the

Table 1. Abductive past action sequence prediction using the pro-
posed methods on the Abduct at T setup.

Model Accuracy
Human performance 14.00

GRU Transformer
Relational MLP 9.43±0.13 9.59±0.06
Relational Self Att. Transformer 9.72±0.06 9.95±0.07
Relational Cross Att. Transformer 9.69±0.18 9.96±0.12
Relational GNNED 9.81±0.05 10.11±0.19
RBP 10.48±0.05 10.22±0.12
BiGED 10.54±0.15 10.1±0.14

most accurate performance of our models. All models (ex-
cept end-to-end and ViT) are trained on a single RTX3090
or A5000 GPU. For CLIP, we use publicly available imple-
mentations [7]. We use the public API of OpenAI for GPT
3.5 models.

4. Additional Experiments

4.1. Abductive Past Action Sequence Prediction

Next, we formulated the abductive past action sequence
prediction task based on the Abduct at T setup. We at-
tached a GRU / transformer decoder to our existing object-
relational models. To train both sequence prediction mod-
els, we freeze the object detector and relational model (ϕ()).
Then, we use the relational vector xr and action distribu-
tion obtained from ϕc() as the initial hidden state and pass
it to the GRU respectively. The transformer decoder takes
non-pooled relational features (a matrix of size n × d) as
the key, value, and max-pooled relational features xr as the
query. The output of these models is fed into a linear clas-
sifier to produce action sequences autoregressively. The re-
sults of these models are reported in Table 1. The BiGED
model obtains slightly better performance than the rest. Al-
though the performances of these models are suboptimal,
we note that humans are also unable to obtain satisfactory
results (only 14.00% accuracy). As we are constrained to
only utilize available information in a single frame, the so-
lution contains a substantial amount of sequence permuta-
tions. Therefore, the task is extremely challenging. The
poor human performance also suggests how humans may
use abduction. Perhaps humans do not resolve causal chains
when performing abduction as it is a very challenging task.

We use the Hamming Loss to evaluate the action se-
quence prediction models as follows:

H =
1

N ∗ L

N∑
n=1

L∑
l=1

[yl ̸= ŷl] (5)

where N is the total number of samples and L is the se-
quence length. Finally, for a given sample, the accuracy is
(1−H)× 100.



Table 2. Ablation on graph affinity using Abduct at T setup.

Model mAP R@10 mR@10
Jaccard Vector Similarity 35.75 60.55 44.37
Cosine Similarity 34.17 57.98 41.97
Dot product 28.81 54.68 38.38

Table 3. Ablation study for the impact of semantic features and
scheduler on the abductive past action set inference for the Abduct
from current and previous images setup using self-attention trans-
former.

Model mAP R@10 mR@10
Visual only 21.42±0.13 46.44±0.12 34.24±0.42
Visual + scheduler 21.93±0.16 47.04±0.44 34.80±0.47
Visual + semantic 35.40±0.16 68.47±0.06 54.90±0.52
Visual + semantic + scheduler 35.77±0.30 69.16±0.50 55.70±0.47

4.2. Ablation Study

Ablation on graph affinity function: By default, we
use the Jaccard Vector Similarity as the affinity WA(i, j) for
the GNNED and BiGED models. Here, we ablate the im-
pact of this design choice by comparing it with cosine sim-
ilarity and dot product. As can be seen from the results in
Table 2, the Jaccard Vector Similarity (JVS) obtains better
results than cosine similarity and dot product. This behav-
ior can be attributed to the fully differentiable and bounded
nature of JVS in contrast to the dot product or cosine simi-
larity.

Impact of semantic features and learning scheduler:
Apart from the two different setups mentioned, we also
use a third setup for ablations. In the third setup, the ac-
tion sets are formed from the current and previous images
which form the ground truth denoted by A = {At−1

⋃
At}

for faster experimentation. We retrain all object-relational
models with the corresponding past action set obtained from
the current and previous images. We perform ablation stud-
ies on the relational self-attention transformer based on this
setup. These findings can also be generalized to the other
setups as mentioned earlier.

We evaluate the effect of visual and semantic (Glove [6])
features in Table 3. The use of semantic features provides
a huge performance boost across all metrics. We attribute
the performance increase to the contextual information pro-
vided by the semantics. The semantics of objects enable the
model to effectively identify and relate actions, providing
a more intuitive means for reasoning about these actions.
It is also interesting to see the impact of the learning rate
scheduler which provides considerable improvement for the
transformer model. Therefore, we use semantics and the
learning rate scheduler for all our models.

Table 4. The object-relational model parameters for the abductive
past action inference task.

Model Parameters
Relational MLP 13.4M
Relational Self Att. Transformer 101.2M
Relational Cross Att. Transformer 65.9M
Relational GNNED 80.7M
RBP 373.4M
BiGED 213.6M

4.3. Object-Relational Model Parameters

The proposed object-relational model parameters are
shown in Table 4. The rule-based inference model does not
have any parameters and is therefore omitted from the ta-
ble. Based on the results shown earlier, we note that the
GNNED model obtains better performance than the trans-
former model even though it has lesser parameters. In ad-
dition, our proposed BiGED model has lesser parameters
and performs comparable to or better than the RBP model.
These further demonstrate the effectiveness of the proposed
GNNED, RBP, and BiGED models for the challenging task
of abductive past action inference.

4.4. Qualitative Results

We compare qualitative results for the abductive past ac-
tion set prediction task in Figure 5. Depending on the num-
ber of past action labels an image has, we take the same
number of top-k predicted actions from each model. All
models demonstrate their ability to perform abductive past
action inference. In the first image, there are objects such as
a person, laptop, table, cup, and dish. In the second image,
there are objects such as a person, floor, blanket, bag, and
vacuum. In both scenarios, RBP and BiGED demonstrate
that they can infer past actions more accurately.
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Snapshot GT Rule-based MLP Transformer GNNED RBP BiGED
Holding a dish
Taking a cup/glass/bottle
from somewhere
Holding a
cup/glass/bottle of
something
Working/Playing on a
laptop
Working at a table
Watching a laptop or
something on a laptop
Drinking from a
cup/glass/bottle

Putting something on a
table
Taking a cup/glass/bottle
from somewhere
Sitting at a table
Working at a table
Working/Playing on a
laptop
Holding a laptop
Opening a laptop
Sitting in a chair
Drinking from a
cup/glass/bottle
Taking a dish/es from
somewhere

Holding a dish
Putting something on a
shelf
Walking through a
doorway
Closing a closet/cabinet
Opening a closet/cabinet
Putting a dish/es
somewhere
Taking a dish/es from
somewhere
Someone is smiling
Someone is sneezing
Someone is standing up
from somewhere

Holding a dish
Taking a cup/glass/bottle
from somewhere
Putting something on a
table
Closing a closet/cabinet
Opening a closet/cabinet
Putting a dish/es
somewhere
Taking a dish/es from
somewhere
Someone is cooking
something
Someone is smiling
Someone is standing up
from somewhere

Holding a dish
Taking a cup/glass/bottle
from somewhere
Putting something on a
table
Working/Playing on a
laptop
Tidying up a table
Putting a
cup/glass/bottle
somewhere
Drinking from a
cup/glass/bottle
Putting a dish/es
somewhere
Taking a dish/es from
somewhere
Someone is standing up
from somewhere

Holding a dish
Taking a cup/glass/bottle
from somewhere
Holding a
cup/glass/bottle of
something
Working/Playing on a
laptop
Putting something on a
table
Watching a laptop or
something on a laptop
Drinking from a
cup/glass/bottle
Putting a
cup/glass/bottle
somewhere
Opening a closet/cabinet
Taking a dish/es from
somewhere

Holding a dish
Taking a cup/glass/bottle
from somewhere
Holding a
cup/glass/bottle of
something
Working/Playing on a
laptop
Putting something on a
table
Walking through a
doorway
Putting a
cup/glass/bottle
somewhere
Putting a dish/es
somewhere
Taking a dish/es from
somewhere
Someone is standing up
from somewhere

Holding a blanket
Holding a bag
Snuggling with a
blanket
Sitting on the floor
Lying on the floor
Holding a vacuum
Someone is awakening
somewhere

Putting a broom
somewhere
Taking a broom from
somewhere
Throwing a broom
somewhere
Tidying up with a broom
Fixing a light
Turning on a light
Turning off a light
Drinking from a
cup/glass/bottle
Holding a
cup/glass/bottle of
something
Pouring something into
a cup/glass/bottle

Holding a blanket
Holding some clothes
Putting clothes
somewhere
Holding a towel/s
Putting a blanket
somewhere
Taking a blanket from
somewhere
Walking through a
doorway
Someone is smiling
Someone is sneezing
Someone is standing up
from somewhere

Holding a blanket
Holding a bag
Holding some clothes
Putting clothes
somewhere
Taking some clothes
from somewhere
Opening a bag
Taking a bag from
somewhere
Walking through a
doorway
Someone is smiling
Someone is standing up
from somewhere

Holding a blanket
Holding a bag
Snuggling with a
blanket
Opening a bag
Putting a bag
somewhere
Taking a bag from
somewhere
Putting a blanket
somewhere
Taking a blanket from
somewhere
Tidying up a blanket/s
Someone is standing up
from somewhere

Holding a blanket
Holding a bag
Snuggling with a
blanket
Sitting on the floor
Holding a vacuum
Opening a bag
Taking a bag from
somewhere
Taking a blanket from
somewhere
Drinking from a
cup/glass/bottle
Tidying something on
the floor

Holding a blanket
Holding a bag
Snuggling with a
blanket
Sitting on the floor
Holding a vacuum
Opening a bag
Taking a bag from
somewhere
Throwing a blanket
somewhere
Fixing a vacuum
Someone is standing up
from somewhere

Figure 5. Manually selected qualitative results produced by each model on the abductive past action set inference: Abduct last image
setup on the AG test dataset. The first column shows the image followed by their corresponding ground truth past actions. The remaining
columns display the actions predicted by each model, with correct predictions highlighted in green and incorrect predictions highlighted in
red.
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