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We summarize the content of the supplementary material
as follows. Section 1 presents the issue with using the exist-
ing denoising/segmentation methods in supporting the data
underlying the motivation of our task. Section 2 provides
details on the creation of noise data for silhouette regions
based on the experimental data. Section 4 provides the im-
plementation details of the compared models.

1. Issue with Existing Methods

DSFD [4] focuses only on the sound field without ob-
jects. Thus, it cannot be directly applied to a sound field
with objects. To provide evidence for this, denoising results
for sound-field images with object silhouettes are shown
in Fig. 1. The denoising was carried out by DSFD trained
with the without-silhouette (w/o silhouette) dataset. The
trained model was obtained from the publicly available
GitHub repository of the author of DSFD [3]. We created
the evaluation data, which included object silhouettes. The
sound waves appeared inside the silhouette regions on the
second-row images. Therefore, the DSFD cannot properly
denoise the sound-field images, especially in the silhouette
regions.

For segmentation, it may be natural to use a foundational
model designed for natural image segmentation. To con-
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Figure 1. Denoising results estimated using DSFD trained with
w/o silhouette dataset
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Figure 2. Segmentation results estimated by SAM

firm the applicability of the image segmentation foundation
model, we conducted a preliminary experiment. Segment
Anything Model (SAM) [6] was used to estimate zero-shot
segmentation labels. To handle sound field data with SAM,
we extracted only the real part channel of the input sound
field images (floating-point numbers), converted them to
ranging from 0 to 255, and then transformed them into 1-
channel images similar to Grayscale images. Subsequently,
these images were converted to RGB for input into SAM.
The segmentation results are shown in Fig. 2. The top two
rows are the input and segmented images for noisy data, the
next two rows are the input and segmented images for clean
data, and the last row is the ground truth of the segmen-
tation labels. The visualization of the segmentation masks
obtained by SAM is performed by overlaying randomly as-
signed colors for each mask on the input images. Therefore,
the same color represents a single segmentation mask. For
the results with noisy images as input (See the second-row
of Fig. 2), the segmentation does not perform well where the
noises in the input image are high, for example, the second,
fourth, sixth, and ninth columns from the left in the Fig. 2.
For the results with clean images as input (See the fourth-
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row of Fig. 2), there are no images where the object sil-
houettes are entirely unsegmented. However, some images
show multiple segments within the same object silhouettes,
for example, the first, second, and fourth columns from the
left in the Fig. 2. From these results, it can be concluded
that even with the foundation model for image segmenta-
tion, SAM, attempting zero-shot segmentation on the noisy
data is ineffective. Furthermore, the performance, even with
the clean data, is inadequate. Hence, we considered the task
of joint training and inferring denoising and segmentation.

2. Noise Creation based on Experimental Data

As mentioned in the main paper regarding dataset cre-
ation, we calculated the noise for silhouette regions from
experimentally obtained data. In this section, we provide
supplemental information for data collection and noise cre-
ation.

We estimated the probability density function (PDF) by
kernel density estimation (KDE) on the basis of experimen-
tally measured data. The data were collected by parallel
phase-shifting interferometry (PPSI) [5]. The experimental
setup is shown in Fig. 3(a). We installed a shielding object
between two optical flats and recorded the data five times.
The frame rate of the high-speed camera in the PPSI system
was set to 20,000 frames per second, and 200 images were
collected for each recording. To remove the low-frequency
noise, a high-pass filter with a 500-Hz cut-off frequency was
applied to the recorded images along the time direction. The
real and imaginary parts of the Fourier-transformed data
were regarded as one image. The single pixel value was re-
garded as one sample, and 28,800,000 samples in total were
used for estimating the PDF. Histograms of the measured
data and estimated PDF are shown in Fig. 3(b). There is
good agreement between the estimated PDF and histogram
of the measured data.

Noise data for silhouette regions were generated on the
basis of the estimated PDF by using the inverse transform
sampling method. An example of the generated data is
shown in Fig. 3(c). The left and right figures show the mea-
sured and generated data, respectively. The generated data
were sampled data based on the estimated PDF correspond-
ing to the number of pixels in the image and reshaped to
match the image dimensions. We confirmed that the gener-
ated noise data was similar to the measured data, except for
spatial patterns originating from the optical elements.

3. Preliminary experiment for loss function

To determine the loss function for the proposed method,
we conducted a preliminary experiment to compare perfor-
mance by loss functions. For denoising loss Ldenoise, mean
squared error (MSE), mean absolute error (L1), and nega-
tive peak signal-to-noise ratio (N-PSNR) losses were com-
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Figure 3. Noise-data creation based on experimental data. (a) Ex-
perimental setup of data collection. (b) Histogram of measured
data and estimated probability density function (PDF). (C) Mea-
sured data and generated noise data.

Ldenoise Lseg λ PSNR [dB] SSIM IoU

MSE BCE 0.001 40.8 0.983 0.981
MSE BCE+Dice 0.001 41.5 0.984 0.984
L1 BCE 0.01 42.2 0.986 0.980
L1 BCE+Dice 0.01 42.3 0.987 0.982

N-PSNR BCE 10 43.2 0.987 0.985
N-PSNR BCE+Dice 10 43.2 0.987 0.986

Table 1. Comparsion of loss function. Negative PSNR loss and
balanced BCE and Dice loss were best for denoising and segmen-
tation, respectively.

pared. For segmentation loss Lseg, binary cross entropy
(BCE) and balanced BCE and dice (BCE+Dice) losses were
compared. We conducted training and evaluation with 6
patterns of all combinations of 3 loss functions for denois-
ing and 2 loss functions for segmentation. The evaluation
result is shown in Tab. 1. The weighting coefficient λ was
set to roughly matching digits of loss values. Using N-
PSNR as Ldenoise was the best performance for denoising.
For segmentation, using BCE+Dice loss as Lseg was the
best performance for segmentation. Since combination of
N-PSNR and BCE+Dice marked best performance in both
denoising and segmentation, we selected them as loss func-
tions for proposed method.



4. Implementation Details
In this section, the implementation details for the com-

pared models are provided. The following parameters were
common to all models. All models were implemented by
PyTorch. The loss function for segmentation Lseg was the
combination of binary cross entropy loss LBCE and dice
loss LDice: Lseg = (1−α)LBCE+αLDice with the weight-
ing coefficient α = 0.5. The number of epochs was set to
20. The number of channels of input and output layers were
set to 2 and 3, respectively. The parameters that differ for
each model are listed below.

DnCNN [7] The denoising and segmentation model
based on DnCNN was implemented by referencing publicly
available code from the DSFD repository [3]. The network
architecture was almost the same as in the original paper [7]
except for the number of input/output channels. The Adam
optimizer was used where the learning rate was 0.001, and
β1 and β2 were 0.9 and 0.999, respectively. The exponential
learning rate scheduler was used where the multiplicative
factor γ was 0.95. MSE loss was used as the loss function
for denoising Ldenoise.

LRDUNet [2] The denoising and segmentation model
based on LRDUNet was implemented by referencing pub-
licly available code from the DSFD repository [3]. The net-
work architecture was almost the same as in the original
paper [2] except for the number of input/output channels.
The Adam optimizer was used where the learning rate was
0.001, and β1 and β2 were 0.9 and 0.999, respectively. The
exponential learning rate scheduler was used where the mul-
tiplicative factor γ was 0.95. L1 loss was used as the loss
function for denoising Ldenoise.

NAFNet [1] The denoising and segmentation model
based on NAFNet was implemented by referencing publicly
available code from the DSFD repository [3]. The network
architecture was almost the same as in the original paper [1]
except for the number of input/output channels. The Adam
optimizer was used where the learning rate was 0.001, and
the β1 and β2 were 0.9 and 0.999, respectively. The expo-
nential learning rate scheduler was used where the multi-
plicative factor γ was 0.95. MSE loss was used as the loss
function for denoising Ldenoise.

KBNet [9] The denoising and segmentation model based
on KBNet was implemented by referencing publicly avail-
able code from the KBNet repository [8]. The network
architecture was almost the same as in the original pa-
per [9] except for the number of input/output channels. The
AdamW optimizer was used where the learning rate was
3e-4, weight decay was 1e-4, and β1 and β2 were 0.9 and

Evaluation data PSNR [dB] SSIM IoU

w/o silhouettes 43.5 0.991 1.00 (for class 0)
w/ silhouettes 43.2 0.987 0.986 (for class 1)

Table 2. Evaluation for w/o silhouette dataset
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Figure 4. Experimental results of w/o silhouette sound field. Color
indicates phase of light detected with PPSI.

0.999, respectively. The cosine annealing with the restart
learning rate scheme was used where the periods for each
cosine annealing cycle were set to 92000 and 208000, the
restart weights at each restart iteration were all set to 1, and
the minimum learning rates at each cycle were set to 3e-4
and 1e-6. L1 loss was used as the loss function for denois-
ing Ldenoise.

5. Evaluation of Denoising Performance for
Sound Fields without Objects

To confirm the applicability of the proposed method to
sound-field images without object silhouettes, we created
an evaluation dataset without objects. The parameters of
the dataset, such as the positions, frequencies, and sound
pressures of the sound sources, are the same as those of
the dataset described in Sec 3.2 of the main paper except
for the existence of objects. The evaluation result is shown
in Tab. 2. The trained model with the with-silhouette dataset
(w/ silhouettes) was used for the evaluation. The IoU was
calculated for class 0 (sound fields), where w/o silhouette
data was used for the evaluation. These results indicate that
the proposed method can be applied to sound fields with-
out objects even if the network is only trained on data w/
silhouettes.

For further verification, the results applied to the exper-
imental data without objects are shown in Fig. 4. In this
experiment, sound images of a 12-kHz burst wave gener-
ated from a loudspeaker (FOSTEX FT48D) [4] were used.
The top row is the input data where the burst wave propa-
gated from left to right. The noise was eliminated by our
method. For segmentation, although all values should be
0 (black), some pixels were falsely detected as silhouette
class (white).
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