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1. Implementation details
Figure 1 shows the architecture of our adapter (Aℓ) as a neural diagram (introduced in [1]). It is combined with the

embeddings Tℓ in an attention module in which Tℓ act as queries and the adapter weights Aℓ act as keys and values.
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Figure 1. Neural circuit diagram for the proposed SAM-Decoder-Adapter

2. Statistical Analysis
To evaluate the statistical significance of performance differences between Med-SA [7] and SAM-DA on the fully super-

vised task, we conducted a paired t-test on image-wise mIoU scores obtained from both methods on the Retouch-Spectralis
dataset. The test was conducted under the null hypothesis that Med-SA and SAM-DA achieve the same mean mIoU across
images. A p-value of p < 0.01 was obtained, providing sufficient evidence to reject the null hypothesis and indicating a
significant performance difference between the methods.

As each image may contain a unique subset of classes, image-wise mIoU scores are not directly comparable across images,
and the application of this paired t-test is not completely justified from a theoretical standpoint. However, this approach was
selected as the most feasible option among available alternatives, despite its limitations. Alternative paired t-test methods
were considered but ultimately dismissed as unworkable. For instance, conducting a t-test over multiple random seeds per
model would have required more than 100 seeds to reach a statistical power of 0.9, which was impractical. A pixel-level paired
t-test was also ruled out due to the high correlation between pixels within images, which would likely yield an artificially low
and unreliable p-value.
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Figure 2. Qualitative results on three randomly selected test samples from domain generalization subsets

3. Further results
Table 1 shows the IoU of all the methods on the four different subsets that compose HQSeg-44K [3]. Encoder Adapter

and Decoder Adapter represent our proposed methods with two different placements of the adapter (encoder and decoder,
respectively). Due to the high number of images, we see that adaption methods with a higher number of parameters, such as
LoRA, outperform smaller ones, such as HQ-SAM or our SAM Adapter.

COIFT HRSOD ThinObject5k DIS5K

Fine-Tuning 82.07±0.58 79.44±0.14 79.32±0.33 63.33±0.34

Decoder FT 84.91±0.58 82.46±0.14 84.54±0.33 71.61±0.34

LoRA 86.01±0.19 84.50±0.18 87.86±0.26 74.22±0.52

Med-SA 85.74±0.15 83.94±0.73 89.83±0.31 75.69±0.28

HQ-SAM 84.17±0.20 81.41±0.26 81.41±0.12 69.88±0.12

Encoder Adapter 84.82±0.26 82.41±0.30 84.61±0.15 71.41±0.42

Decoder Adapter 84.61±0.28 81.81±0.50 82.73±0.10 69.24±0.56

Table 1. IoU of all the methods on the different subsets that compose HQSeg-44K. Variance has been obtained over four trained models on
the validation set

Figure 2 shows qualitative results on three test samples selected randomly from the untrained domains (Cirrus for Re-
touch [2], UCL for MRI [5, 6], and NUHS Singapore for WMH [4]).

Tables 2 and 3 show the impact of the dimension of the adaption prompt Aℓ on the performance.



Retouch - Spectralis MRI - BMC WMH - Utrecht HQ-Seg

512 75.4±0.6 86.2±1.5 44.2±0.3 79.6±0.4

1024 75.8±0.8 85.6±1.6 40.5±3.8 71.6±2.8

2048 76.3±0.8 85.2±1.7 39.0±4.7 70.2±2.3

Table 2. Ablation study for the size of the adapter embeddings. IoU scores for full supervision. Variances are computed over four trained
models tested on the testing set.

Retouch - Cirrus MRI - UCL WMH - Singapore

512 70.2±3.1 80.6±1.0 39.6±0.7

1024 69.4±1.3 79.8±1.3 38.7±3.1

2048 69.2±1.2 80.2±1.1 35.5±3.4

Table 3. Ablation study for the size of the adapter embeddings. Application of trained models to zero-shot domain generalization. The
variance was obtained over four trained models tested on the testing set.
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