
ERM++ : An Improved Baseline for Domain Generalization Supplementary
Materials

Piotr Teterwak‡ Kuniaki Saito‡ Theodoros Tsiligkaridis† Kate Saenko‡ Bryan A. Plummer‡

Boston University‡ MIT Lincoln Laboratory†

{piotrt,keisaito,saenko,bplum}@bu.edu ttsili@mit.edu

1. Additional Results

1.1. Cumulative Study

In addition to the ablative study of ERM++ components
in the main paper, we add a cumulative study in Table 1.
Similar to the ablative study, we can see that performance is
enhanced by each component of ERM++, in some cases by
over 2% (Experiment 2, MPA).

1.2. MealV2 Distillation Results

In Table 2, we look at the per-domain accuracy on Do-
mainNet, comparing Augmix training (Aug) and MealV2
(MV2). MealV2 is a method used to distill a large ensem-
ble into a student ResNet-50, where the student is initialized
to AugMix weights. We can see that the distillation process,
while dramatically improving ImageNet performance, only
slightly changes DG performance. In particular, generaliza-
tion gets slightly worse for all domains except for (R)eal,
which is the most similar to ImageNet. This is surprising,
since it has been shown that both ensembles [2] and larger
models [1] improve DG performance.

1.3. Weight space regularization

In Table 3 we explore a setting where instead of averag-
ing model weights, we attempt to include diversity between
the models being averaged as this has been shown to boost
performance [16]. Following [14], we first train a gener-
alist model on all source domains for 28k steps, then train
specialist models for 28k steps (1 model per domain), be-
fore averaging parameters. Although averaging specialists
improves over ERM by 2%, it underperforms averaging it-
erates of a generalist by 2%. One possible explanation is
that each domain has too little data to create a good special-
ist model

1.4. Per-dataset details

In Tables 4 (OfficeHome), 5 (DomainNet), 6 (VLCS),
7 (TerraIncognita), 8 (PACS), we expand results for the
datasets and report accuracies for each held-out domain. We

compare ResNet-50 ERM++ with reported performances of
ERM [9], DIWA [16], SWAD, [5], and MIRO [6]. ERM
+ SWAD + MIRO and DIWA are the current SOTA for
ResNet-50 models for this set of datasets. Overall trends
include ERM++ being especially effective at sketch-like do-
mains, indicating a lowered texture bias. On the sketch and
clipart domains in DomainNet, ERM++ outperforms prior
best performance by over 4%. When we additionally com-
bine MIRO with ERM++, we see much improved perfor-
mance on OfficeHome and TerraIncognita without much af-
fecting the performance on the other datasets.

1.5. Validation-Set Accuracy Curves

In Figures 10,11,12,13, and 14, we provide source-
validation accuracies for each of the 5 datasets, for 20000
steps for most datasets except for the larger DomainNet,
which is 60000 steps. As one can see, at this point, val-
idation accuracy is saturated for most domains in most
datasets, so this training length is reasonable. Prior train-
ing lengths are denoted as red vertical lines in these figures,
and one can see that for many datasets this is not a sufficient
training length. As we describe in Section 4.1 of the main
paper, extending training lengths with Auto-LR improves
performance by 0.5% on average.

2. Dataset Visualizations
In Figures 1 (OfficeHome), 3 (DomainNet), 4 (VLCS), 5

(TerraIncognita), 6 (PACS), 7 (FMoW), and 8 (PCAM) we
show samples of a few classes from each of the datasets, and
each domain. As one can see, both the datasets and distri-
bution shifts are quite diverse, highlighting the flexibility of
our method. We present some key attributes of the datasets
below.
OfficeHome [18] Figure 1. This dataset focuses on house-
hold objects. The domain shifts are in low-level style
mostly, and there is little spatial bias.
DomainNet [15] Figure 3. While the real domain is quite
similar to what one might expect in ImageNet, the distri-
bution shifts are quite substantial in other domains. Quick-

1

Cumul. study (#6 is full ERM++) OfficeHome PACS VLCS DomNet TerraInc Avg.
MPA FD WS Auto-LR S. Init UBN 15K 10K 11K 590K 25K

1 ✗ ✗ ✗ ✗ ✗ ✓ 67.1±0.2 85.1±0.3 76.9±0.6 44.1±0.15 45.2±0.6 63.7
2 ✓ ✗ ✗ ✗ ✗ ✓ 70.2±0.3 85.7±0.2 78.5±0.3 46.4±0.0 49.4±0.4 66.0
3 ✓ ✓ ✗ ✗ ✗ ✓ 71.5±0.1 87.3±0.2 77.4±0.1 46.8±0.0 49.8±0.5 66.5
4 ✓ ✓ ✓ ✗ ✗ ✓ 72.6±0.1 88.8±0.1 77.0±0.1 48.6±0.0 49.3±0.3 67.3
5 ✓ ✓ ✓ ✓ ✗ ✓ 72.6±0.1 88.8±0.1 78.7±0.0 48.6±0.0 49.2±0.3 67.6
6 ✓ ✓ ✓ ✓ ✓ ✓ 74.7±0.0 89.8±0.3 78.0±0.1 50.8±0.0 51.2±0.3 68.9

Table 1. We present the overall cumulative study for ERM++. ERM++ corresponds to experiment 6. (1) ERM [9] baseline with unfrozen
BN. (2) MPA: Model parameter averaging, which uniformly improves results. (3) FD: training on the full data. (4) WS: Warm-starting
the classification layer especially improves OfficeHome and PACS. (5) Auto-LR: Learning the lr schedule, which ensures convergence
improves performance by an additional half percent. (6) S.Init: Initializing the initial parameters to those trained with AugMix brings
performance to state of the art.

Painting Clipart Info Real Quickdraw Sketch Avg

Aug [10] 57.3 68.8 25.6 70.2 17.1 59.8 49.8
MV2 [17] 57.3 68.5 25.4 70.9 16.1 59.0 49.5

Table 2. Model distillation’s effect on DG: We look at the per-domain accuracy on DomainNet, comparing Augmix training (Aug)
and MealV2 (MV2). MealV2 is a method used to distill a large ensemble into a student ResNet-50, where the student is initialized to
AugMix weights. We can see that the distillation process, while dramatically improving ImageNet performance, only slightly changes DG
performance.

draw and Infograph are particularly challenging, so the 1-
3% gains of ERM++ on these domains is meaningful (Table
5).
VLCS [8]: Figure 4. Low-level statistics are quite simi-
lar between domains in this dataset, however spatial biases
differ between domains. For example, Caltetch objects are
quite centered, while other domains do not have this trait.
For example the LabelMe domain has cars along the side
of the image, and there are many chairs in the VOC2007
domain. Furthermore, in some cases the size of the objects
differs dramatically. Lastly, there are many ambiguous im-
ages in the LabelMe domain (see Figure 9), raising ques-
tions about the validity of trying to improve performance
on this dataset.

TerraIncognita [4]: Figure 5 The background stays con-
sistent, and the animal object frequently takes up a small
portion of the frame. At night the images are black-and-
white. This is a very realistic dataset, on which is good to
test.

PACS [13] Figure 6. The subjects tend to be centered, and
the sketches are more realistic than the quickdraw setting in
DomainNet. Though the domains are similar to that of Do-
mainNet, PACS has fewer than 10000 samples compared to
586000 of DomainNet. Therefore PACS tests the capabili-
ties of ERM++ on smaller data.

FMoW [7, 12]: Figure 7. The images differ in region but
also in resolution and scale. The distribution shift between
FMoW and the pretraining data is large, therefore FmoW
represents the ability of ERM++ to perform on non web-

scraped data (see Section 5 of the main paper).
PCAM [3, 12]: Figure 8. The images are difficult to parse
for an untrained human, but without tumors the images
seems to have smaller and more dense cell structure. We
also use this to test the generalization of ERM++ to perform
on non-webscraped data (see Section 5 of the main paper)
Images from Figure in [12].

2.1. Attention Tuning Visualization

We visualize attention tuning attention maps, and com-
pare them to ERM++ w/out attention tuning and a pre-
trained DINOv2 model in Figure 2. We find attention tuning
can pick up discriminative, but occluded, features in sam-
ples where ERM++ w/out attention tuning.

3. Runtime Comparisons
As discussed in the main paper Section 4.4; ERM++

achieves higher predictive performance than competing
methods MIRO [6] and DIWA [16] despite lower computa-
tional cost for training. The reason is reduced cost of hyper-
parameter search; we use fixed hyper-parameters, borrowed
from the DomainBed framework, (see Section 4.2 for more
details) while DIWA averages 20-60 models and MIRO
search for 4 λ weight regularization values in each exper-
iment. Assuming the worst case scenario of training two
full passes (one on validation data for the training step cap
in Auto-lr, and one on full training data with validation data
folded in Full Data), and the same number of training steps
as MIRO; ERM++ costs 1

2 that of MIRO while obtaining

Painting Infograph Quickdraw Sketch Real Clipart Avg

ERM 51.1 21.2 13.9 52.0 63.7 63.0 44.1
SMPA 52.9 27.2 14.3 51.3 65.6 65.2 46.1
MPA 55.2 24.0 16.7 57.4 67.0 67.49 48.0

Table 3. Weight Space Regularization: We experiment with different types of parameter averaging for weight regularization on Do-
mainNet. SMPA is a specialized model parameter averaging, where we average parameters of domain specialists, while MPA averages
parameters within a single training trajectory. While both outperform ERM, MPA outperforms SMPA.

art clipart product real avg

ERM [9] 63.1 51.9 77.2 78.1 67.6
ERM + SWAD [5] 66.1 57.7 78.4 80.2 70.6
DIWA [16] 69.2 59 81.7 82.2 72.8
ERM + MIRO + SWAD [6] - - - - 72.4
ERM++ 70.7 62.2 81.8 84.0 74.7
ERM++ + MIRO 74.0 61.5 83.8 85.7 76.3

Table 4. OfficeHome: Per-domain top-1 accuracy against reported results of recent top-performing methods SWAD, DIWA, and MIRO. [6]
does not report per-domain performance for MIRO, so we only show average for that case. DIWA doesn’t report standard errors. ERM++
not only greatly increases performance relative to SWAD, DIWA, and MIRO but also reduce variance between runs. The largest gains are
on the held-out domain with the largest domain shift(clipart), illustrating the ability of ERM++ to improve performance on difficult DG
tasks.

better performance. In particular, this configuration repre-
sents Experiment 8 in Table 5 of the main paper.

For each forward step MIRO there is an additional for-
ward pass of the data through the model which is absent in
ERM++. On the other hand, ERM++ does take a forward
pass through the running average model to update batch nor-
malization statistics, which is not done in former methods.
This means that each forward pass is compute-equivalent
for ERM++ and MIRO, for a given architecture.

4. Reproducibility
We provide code in a zip file along with this supplemen-

tary, and will open-source the code upon acceptance.

4.1. Infrastructure

We train on a heterogeneous cluster, primarily on
NVIDIA A6000 GPU’s. Each experiment is conducted on
a single GPU with 4 CPUs. A single run could range from
12-48 hours, depending on number of steps trained.

4.2. Training details

We follow the DomainBed [9] training procedure and
add additional components from ERM++. In particular, we
use the default hyper-parameters from DomainBed [9], e.g.,
a batch size of 32 (per-domain), a learning rate of 5e-5, a
ResNet dropout value of 0, and a weight decay of 0. We use
the ADAM optimizer [11] optimizer with β and ϵ values set

default values from Pytorch 1.12. We extend the training
cap to 4x the initial learning when Auto-lr is used. We train
on all source domains except for one, validate the model on
held-out data from the sources every 300 steps(20% of the
source data), and evaluate on the held-out domain. If using
Full Data we retrain using the full data. We use the same
data augmentation techniques as ERM [9].

ViT Training Details: We follow a similar recipe for ViTs,
with a few changes. First, we don’t extend the training step
cap by 4x on account of ViT’s being over-parameterized and
easy to overfit, relative to ResNet-50. Second, we use the
LARS optimizer, which adjusts the learning rate according
to the weight norm per-layer, and with a larger 1e-1 learn-
ing rate for the linear classifier during warmup (1e − 1).
The LARS optimizer decreases weight updates to stabilize
training, and ViTs are unstable to train.

Model Parameter Averaging details: If we use Model Pa-
rameter Averaging(MPA), we begin to keep a running aver-
age at the 100th step. If we additionally use warm-start, we
only optimize the classification head for the first 500 steps
(2500 for ViT), and start MPA 100 steps after that. For the
Specialist Model Parameter Averaging(SMPA) experiments
(Table 9 of main paper), we first train a generalist model for
15000 steps , then train an independent model for each do-
main for another 1500 steps. At the end, we average param-
eters and re-compute batch norm running statistics. This re-
computing of BN stats makes sure the averaged model has

To
ys

Fl
ow

er
s

B
ik
e

R
ad
io

Art Clipart Product Real

Figure 1. OfficeHome: Samples from the OfficeHome [18] dataset, from each domain and selected classes. The dataset focuses on
household objects. The domain shifts are in low-level style mostly, and there is little spatial bias.

accurately computed batch norm statistics which may not
be a simple average of experts, due to the non-linearity of
neural nets.

Batch Normalization details: With unfrozen batch nor-
malization(UBN), we update the evaluation model BN
statistics by averaging the model iterates first (from MPA),
then then forward propagating the current batch at each step
through the evaluation model. In this way, the BN running
statistics and model used for inference match.
Pseudocode for auto-lr:

In Figure 15, we show pseudo-code for ‘Auto-lr’
ERM++ component. The learning rate is decreased by
a factor of 0.1 when the validation loss does not de-
crease. Training is stopped after the third consecutive non-

decreasing validation loss
Sources of pre-trained weights: We use torchvision
0.13.1 for vanilla ResNet-50 initialization. For augmix and
ResNet-A1 initialized weights, we leverage TIMM [19] 1 2

.
A note on hyper-parameter search: In this work, we fo-
cus on methodological improvements that do not depend on
expensive hyper-parameter tuning, and as a result we use
default learning rate, weight decay, etc. We demonstrate

1Augmix Weights :https : / / github . com / rwightman /
pytorch - image - models / releases / download / v0 . 1 -
weights/resnet50_ram-a26f946b.pth

2ResNet-A1 Weights :https://github.com/rwightman/
pytorch-image-models/releases/download/v0.1-rsb-
weights/resnet50_a1_0-14fe96d1.pth

https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/resnet50_ram-a26f946b.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth
https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-rsb-weights/resnet50_a1_0-14fe96d1.pth

painting clipart info real quickdraw sketch avg

ERM [9] 50.1 63.0 21.2 63.7 13.9 52.9 44.0
ERM + SWAD [5] 53.5 66.0 22.4 65.8 16.1 55.5 46.5
DIWA [16] 55.4 66.2 23.3 68.7 16.5 56 47.7
ERM + MIRO + SWAD [6] - - - - - - 47.0
ERM++ 58.4 71.5 26.2 70.7 17.3 60.5 50.8
ERM++ + MIRO 58.5 71.0 26.5 71.1 15.9 59.5 50.4

Table 5. DomainNet: Per-domain top-1 accuracy against reported results of recent top-performing methods SWAD, DIWA, and MIRO. [6]
does not per-domain performance for MIRO, so we only show average for that case. DIWA doesn’t report standard errors. ERM++ not
only greatly increases performance relative to SWAD, DIWA, and MIRO but also reduce variance between runs. Similar to results on
OfficeHome (Table 4), the largest performance gains(of larger than 4%) are on domains very different from the source domain(clipart and
sketch). This suggests ERM++ is less sensitive to texture bias than ERM [9]. The bias of MIRO to the pre-trained weights manifests in
slightly higher performance on close to ImageNet domains like real when combined with ERM++, at the slight expense of performance on
other domains.

caltech101 labelme sun09 voc2007 avg

ERM [9] 97.7 64.3 73.4 74.6 77.3
ERM + SWAD [5] 98.8 63.3 75.3 79.2 79.1
DIWA [16] 98.9 62.4 73.9 78.9 78.6
ERM + MIRO + SWAD [5] - - - - 79.6
ERM++ 98.7 63.2 71.6 78.7 78.0
ERM++ + MIRO 99.0 62.4 71.8 78.3 77.9

Table 6. VLCS: Per-domain top-1 accuracy against reported results of recent top-performing methods SWAD, DIWA, and MIRO. [6] does
not per-domain performance for MIRO, so we only show average for that case. DIWA doesn’t report standard errors. Although overall
performance on VLCS is lower than competing methods, we can see that this drop primarily comes from lower performance on sun09.
Furthermore, there are many ambiguous images in the LabelMe domain (see Figure 9), raising questions about the usefulness of trying to
train on this domain.

Pre
-tr

ain
ed

W
/ou

t A
ttn

 Tu
ne

W
/ A

ttn
 Tu

ne

Figure 2. Examples of Attention Tuning Visualization of DINOv2
model. We average over all attention heads in the final attention
block. On a pretrained model, attention is scattered. On both an
attention tuned and full fine-tuned model, attention is more fo-
cused than with a pre-trained model. However, on some samples
(representive samples pictured here) full fine-tuning misses dis-
criminative but occluded animal features. On the top-right im-
ages, the attention tuning picks up the dog. In the bottom-right,
the attention-tuned model picks up a tail in the lower-left corner.

state-of-the-art performance despite this, and greatly reduce
the computational cost of training as a result. However, we
believe there is substantial headroom for improvement with
further hyper-parameter tuning.

MIRO Implementation: We directly follow the MIRO
implementation and borrow the lambda weights values
from [6] when we combine MIRO with ERM++ in Table
2 of the main paper. ERM++ substantially improves the
performance of MIRO.

DIWA Implementation: We follow a simplified version of
the DIWA [16] algorithm due to computational reasons; we
average the parameters of the three seeds of ERM++, with
shared initialization of the linear classifier. The authors of
DIWA show that about half of the performance boost comes
from the first few models averaged (Figure 4 of [16]), there-
fore this is a reasonable approximation of the method.

SWAD Implementation: We directly follow the SWAD
implementation and hyper-parameters from [5].

Ze
br
a

W
in
eB

ot
tle

S
no
w
M
an

B
an
an
a

Real Clipart Painting Infograph Sketch Quickdraw

Figure 3. DomainNet: Samples from the DomainNet [15] dataset. While the real domain is quite similar to what one might expect in
ImageNet, the distribution shifts are quite substantial in other domains. Quickdraw and Infograph are particularly challenging, so the
1-3% gains of ERM++ on these domains is meaningful (Table 5). While most domains contain primarily shifts in low level statistics (for
example, real to painting), Infograph also has many non-centered objects.

Loc. 100 Loc. 38 Loc. 43 Loc. 46 Average

ERM [9] 54.3 42.5 55.6 38.8 47.8
ERM + SWAD [5] 55.4 44.9 59.7 39.9 50.0
DIWA [16] 57.2 50.1 60.3 39.8 51.9
ERM + MIRO + SWAD [6] - - - - 52.9
ERM++ 48.3 50.7 61.8 43.9 51.2
ERM++ + MIRO 60.81 48.8 61.1 42.7 53.4

Table 7. TerraIncognita: Per-domain top-1 accuracy against reported results of recent top-performing methods SWAD, DIWA, and
MIRO. [6] does not per-domain performance for MIRO, so we only show average for that case. DIWA doesn’t report standard errors.
ERM++ outperforms other methods on 3 out of 4 held out domains despite slighly underperforming on average. However, we point out
that ERM++ w/MIRO outperforms both DIWA and MIRO, and improves ERM++ by a further 2%.

D
og

C
ar

B
ird

C
ha
ir

Caltech LabelMe SUN09 VOC2007

Figure 4. VLCS: Sample from the VLCS dataset [8] The low-level statistics are quite similar between domains, however spatial biases
differ between domains. Caltetch objects are quite centered, while other domains do not have this trait. For example the LabelMe domain
has cars along the side of the image, and there are many chairs in the VOC2007 domain. Furthermore, in some cases the size of the
objects differs dramatically. Finally, there are many ambiguous images in the LabelMe domain (see Figure 9), raising questions about the
usefulness of trying to train on this domain.

art painting cartoon photo sketch avg

ERM [9] 84.7 80.8 97.2 79.3 84.2
ERM + SWAD [5] 89.3 83.4 97.3 82.5 88.1
DIWA [16] 90.6 83.4 98.2 83.8 89
ERM + MIRO + SWAD [6] - - - - 88.4
ERM++ 90.6 83.7 98.1 86.6 89.8
ERM++ + MIRO 90.2 83.8 98.6 82.4 88.8

Table 8. PACS: Per-domain top-1 accuracy against reported results of recent top-performing methods SWAD, DIWA, and MIRO. [6] does
not per-domain performance for MIRO, so we only show average for that case. DIWA doesn’t report standard errors. ERM++ leads to
substantial improvement over prior work. As in other dataset (OfficeHome, DomainNet), large performance gains are made on the sketch
domain.

S
qu
irr
el

D
og

B
ob
ca
t

R
ab
bi
t

L100 L38 L43 L46

Figure 5. TerraIncognita: Samples from the TerraIncognita [4] dataset, from each domain and selected classes. The background stays
consistent, and the animal object frequently takes up a small portion of the frame. At night the images are black-and-white. This dataset
matches realistic deployment scenarios well.

P
er
so
n

G
ui
ta
r

D
og

H
ou
se

ArtPainting Cartoon Photo Sketch

Figure 6. PACS: Samples from the PACS dataset [13], from each domain and selected classes. The subjects tend to be centered, and the
sketches are more realistic than the quickdraw setting in DomainNet. Though the domians are similar to that of DomainNet, PACS has
fewer than 10000 samples compared to 586000 of DomainNet. Therefore PACS tests the capabilities of ERM++ on smaller data.

S
ur
fa
ce

M
in
e

C
ro
pF
ie
ld

A
irp
or
tH
an
ga
r

O
ffi
ce

Asia Europe Africa Americas Oceania Other

Figure 7. FMoW: Samples from the FMoW [7, 12] dataset, from each domain and selected classes. The images differ in region but also
in resolution and scale. The distribution shift between FMoW and the pretraining data is large, therefore FmoW represents the ability of
ERM++ to perform on non web-scraped data (see Section 5.4 of the main paper).

Tu
m

or
N

o
Tu

m
or

Hospital 1 Hospital 2 Hospital 3 Hospital 4 Hospital 5

Figure 8. PCAM: Samples from the PatchCamelyon [3, 12] dataset, from each domain and both classes. The images are difficult to parse
for an untrained human, but without tumors the images seems to have smaller and more dense cell structure. Images from [12] paper figure.

Figure 9. Sample from LabelMe Domain in VLCS: Is this a dog, person, or chair? Many samples in the LabelMe domain of VLCS are
ambiguous but assigned a label (in this case, dog). This raises questions about the usefulness of training on this domain.

Figure 10. OfficeHome: Source validation accuracies. The validation accuracy saturates by 20000 steps. Training length used in prior
works is denoted as a red line, and the training is not yet converged.

Figure 11. PACS: Source validation accuracies. The validation accuracy saturates by 20000 steps. Training length used in prior works is
denoted as a red line, and the training is not yet converged.

Figure 12. DomainNet: Source validation accuracies. The validation accuracy saturates by 60000 steps. Training length used in prior
works is denoted as a red line, and the training is not yet converged.

Figure 13. VLCS: Source validation accuracies. The validation accuracy saturates by 20000 steps. Training length used in prior works is
denoted as a red line. In the case of VLCS, it seems like longer training is not so helpful, and this shows the need for Auto-lr
.

Figure 14. TerraIncognita: Source validation accuracies. The validation accuracy saturates by 20000 steps. Training length used in prior
works is denoted as a red line, and the training is not yet converged.

1 import torch
2 import torch.optim as optim
3 import torch.nn as nn
4

5

6 # Initialize variables for learning rate decay
7 lr_decay_factor = 0.1
8 lr = initial_lr
9 max_decay_steps = 3

10 decay_count = 0
11

12 # Training loop
13 for step in range(num_steps):
14 # Your training code here
15

16 # Validation
17 if (step % eval_num_steps == 0)
18 model.eval()
19 validation_loss = compute_validation_loss(model, validation_data, criterion)
20

21 # Check if validation loss is not decreasing
22 if validation_loss >= previous_validation_loss:
23 decay_count += 1
24 if decay_count >= max_decay_steps:
25 break
26 else:
27 # Decay learning rate
28 lr *= lr_decay_factor
29 for param_group in optimizer.param_groups:
30 param_group[’lr’] = lr
31

32 # Update previous validation loss for the next iteration
33 previous_validation_loss = validation_loss
34

Figure 15. Learning Rate Decay with Auto-lr. The learning rate is decreased by a factor of 0.1 when the validation loss does not decrease.
Training is stopped after the third consecutive non-decreasing validation loss.

References
[1] Simone Angarano, Mauro Martini, Francesco Salvetti, Vit-

torio Mazzia, and Marcello Chiaberge. Back-to-bones: Re-
discovering the role of backbones in domain generalization.
arXiv preprint arXiv:2209.01121, 2022. 1

[2] Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming
Xiong. Ensemble of averages: Improving model selec-
tion and boosting performance in domain generalization.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022. 1

[3] Peter Bandi, Oscar Geessink, Quirine Manson, Mar-
cory Van Dijk, Maschenka Balkenhol, Meyke Hermsen,
Babak Ehteshami Bejnordi, Byungjae Lee, Kyunghyun
Paeng, Aoxiao Zhong, et al. From detection of individual
metastases to classification of lymph node status at the pa-
tient level: the camelyon17 challenge. IEEE Transactions
on Medical Imaging, 2018. 2, 11

[4] Sara Beery, Grant Van Horn, and Pietro Perona. Recognition
in terra incognita. In Proceedings of the European confer-
ence on computer vision (ECCV), pages 456–473, 2018. 2,
8

[5] Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol
Cho, Seunghyun Park, Yunsung Lee, and Sungrae Park.
Swad: Domain generalization by seeking flat minima. In
Advances in Neural Information Processing Systems, vol-
ume 34, pages 22405–22418, 2021. 1, 3, 5, 6, 7

[6] Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk
Chun. Domain generalization by mutual-information reg-
ularization with pre-trained models. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XXIII, pages 440–
457. Springer, 2022. 1, 2, 3, 5, 6, 7

[7] Gordon Christie, Neil Fendley, James Wilson, and Ryan
Mukherjee. Functional map of the world. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018. 2, 10

[8] Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased met-
ric learning: On the utilization of multiple datasets and web
images for softening bias. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 1657–1664,
2013. 2, 7

[9] Ishaan Gulrajani and David Lopez-Paz. In search of lost do-
main generalization. In International Conference on Learn-
ing Representations, 2021. 1, 2, 3, 5, 6, 7

[10] Dan Hendrycks, Norman Mu, Ekin D. Cubuk, Barret Zoph,
Justin Gilmer, and Balaji Lakshminarayanan. AugMix: A
simple data processing method to improve robustness and
uncertainty. Proceedings of the International Conference on
Learning Representations (ICLR), 2020. 2

[11] Diederik P Kingma and Jimmy Ba. dam: A method for
stochastic optimization. In International Conference on
Learning Representations, 2015. 3

[12] Pang Wei Koh, Shiori Sagawa, Henrik Marklund,
Sang Michael Xie, Marvin Zhang, Akshay Balsubra-

mani, Weihua Hu, Michihiro Yasunaga, Richard Lanas
Phillips, Irena Gao, et al. Wilds: A benchmark of in-the-
wild distribution shifts. In International Conference on
Machine Learning, pages 5637–5664. PMLR, 2021. 2, 10,
11

[13] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M
Hospedales. Deeper, broader and artier domain generaliza-
tion. In Proceedings of the IEEE international conference on
computer vision, pages 5542–5550, 2017. 2, 9

[14] Margaret Li, Suchin Gururangan, Tim Dettmers, Mike
Lewis, Tim Althoff, Noah A Smith, and Luke Zettlemoyer.
Branch-train-merge: Embarrassingly parallel training of ex-
pert language models. arXiv preprint arXiv:2208.03306,
2022. 1

[15] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 1406–1415,
2019. 1, 6

[16] Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier,
Alain Rakotomamonjy, patrick gallinari, and Matthieu Cord.
Diverse weight averaging for out-of-distribution generaliza-
tion. In Advances in Neural Information Processing Systems,
2022. 1, 2, 3, 5, 6, 7

[17] Zhiqiang Shen and Marios Savvides. Meal v2: Boosting
vanilla resnet-50 to 80%+ top-1 accuracy on imagenet with-
out tricks. arXiv preprint arXiv:2009.08453, 2020. 2

[18] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 5018–5027, 2017. 1, 4

[19] Ross Wightman. Pytorch image models. https:
//github.com/rwightman/pytorch- image-
models, 2019. 4

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	. Additional Results
	. Cumulative Study
	. MealV2 Distillation Results
	. Weight space regularization
	. Per-dataset details
	. Validation-Set Accuracy Curves

	. Dataset Visualizations
	. Attention Tuning Visualization

	. Runtime Comparisons
	. Reproducibility
	. Infrastructure
	. Training details

	References

