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A. Noise Initialization
A.1. Implementation Details

In this section we provide further implementation details of our coordinate-based noise initialization. For each set of
multi-view images, we first sample a “shared noise” that is used across all views (i.e. ωshared in Eqn. 7). To provide the
model with low spatial frequency information related to the change in camera pose across views, we transform normalized
pixel coordinates from each view into the space of the center view. We then take the cosine of these values to remap pixel
coordinates into the range [→1, 1]. These transformed pixel coordinates are then combined with the shared noise according
to Eqn. 8. The coordinate noise for each view ω̂

i is then combined with per-view independent noise ω
i as shown in Eqn. 9.

A.2. Quantitative Comparisons of Noise Initialization Methods
In order to further evaluate the choice of coordinate noise, we compare against other relevant methods for incorporating

shared noise or low-frequency information (Table S1). The first comparison of interest is “mixed noise” [6], which uses a
combination of shared noise across views and independent noise per view. This is similar to our “shared noise” condition in
our ablation study in the main paper (Table 4) but uses a different weighting scheme (Eqn. S1 with ε = 1). As shown in
Table S1, our shared noise implementation provides better performance across all metrics except Intra-LPIPS (compare first
two rows).
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Next, we compare the effect of using our “coordinate noise” implementation vs. combining low-frequency coordinate
noise and high-frequency independent noise, which has been suggested in recent work conditioning on images [20, 27].
Although we do not condition directly on image frames, it’s clear that the combination of low-frequency coordinate noise
and high-frequency independent noise is not as effective as our implementation using Eqn. 9 (compare last two rows of Table
S1).

Overall, it is interesting to note that although our coordinate noise method provides substantial improvements in FID and
overlapping PSNR, mixed noise obtains better performance when measuring Intra-LPIPS.

Table S1. Comparison of noise initialization methods in the panoramic experiment.

Method FID ↑ CLIP Score ↓ PSNR ↓ Ratio ↓ Intra-LPIPS ↑
Mixed Noise [6] 23.25 24.69 23.25 0.624 0.719

Shared Noise (Eqn. 7) 22.06 24.71 23.63 0.635 0.794
Low Freq. Coord. Noise 36.99 23.14 21.63 0.582 0.777
Coord. Noise (Eqn. 8) 19.55 24.95 24.25 0.651 0.776

B. FID/CLIP Score Differences Between Experiments
As noted in the main paper, we observed improved performance as measured by FID and CLIP Score compared to MVD-

iffusion in the panoramic but not the depth-to-image experiment (cf . Tables 1 & 3). One explanation for this performance
difference is that ScanNet text prompts provided by [24] using blip2 were often imprecise or inconsistent across views. Since
MVDiffusion’s method does not account for non-overlapping regions, their method is susceptible to issues like that shown in
Figure S1 for imprecise prompts (here, the prompt “a pair of shoes sitting on the floor next to a bed” leads to hallucinations
of a second bed). These errors can lead to better CLIP Score performance at the expense of multi-view consistency. Further-
more, inconsistent prompts across a scene could negatively impact FID for our method compared with MVDiffusion, which
may exhibit errors only in single views without reconciling across a scene.



Figure S1. MVDiffusion vs. our method with an imprecise prompt “a pair of shoes sitting on the floor next to a bed.”

C. Additional Ablation Studies
In order to further evaluate our design choices for noise initialization, we compare results from experiments varying the

weight parameter w from Eqn. 8. The results shown in Table S2 indicate that setting the weight w = 0.5 indeed provides
the optimal result. However, it is interesting to note that this paramter appears to primarily affect FID and overlapping PSNR
metrics. For these metrics, performance is noticeably – albeit not substantially – worse in either direction away from 0.5.

Table S2. Ablation of weight parameter w in Eqn. 8 in the panoramic experiment.

Method FID ↑ CLIP Score ↓ PSNR ↓ Ratio ↓ Intra-LPIPS ↑
Shared Noise (w = 0.0) 22.06 24.71 23.63 0.635 0.794

Coord. Noise (w = 0.25) 19.71 24.90 23.92 0.643 0.779
Coord. Noise (w = 0.5) 19.55 24.95 24.25 0.651 0.776

Coord. Noise (w = 0.75) 21.02 24.90 23.59 0.634 0.787
Coord. Noise (w = 1.0) 21.70 24.90 23.91 0.643 0.781

We additionally compare performance when using a binary high pass filter (HPF) mask (Eqn. 13) vs. a Gaussian HPF
approach as well as when using a time-dependent (HPF-rt) vs. constant low pass stop frequency (LPF-0.25, using stop
frequency from [20, 27]). The results shown in Table S3 demonstrate that there is minimal difference between the binary or
Gaussian HPF mask. However, we observe that using a time-dependent HPF mask provides substantially better performance.

Table S3. Comparison of binary and Gaussian high (HPF) or low (LPF) pass filters (Eqn. 13) in the panoramic
experiment.

Method FID ↑ CLIP Score ↓ PSNR ↓ Ratio ↓ Intra-LPIPS ↑
Gaussian LPF-0.25 mask 23.99 24.71 23.13 0.621 0.771
Gaussian HPF-rt mask 22.59 24.84 24.47 0.657 0.762

Binary HPF-rt mask (Eqn. 13) 22.36 24.68 24.67 0.662 0.755
Note: Filters are either time-dependent (i.e. “HPF-rt” where rt is the radius defined in Eqn. 13) or use a

normalized stop frequency of 0.25 (i.e. “LPF-0.25”).

Finally, we further validate the design choice of our time-dependent Fourier-based attention module. Specifically, we
consider the following conditions: no spatial frequency filtering (“No filter”), time-dependent low pass filtering (“LPF-rt”),
as well as low and high pass filtering using the inverse relationship with denoising time steps (“LPF-(1 → rt)” and “HPF-
(1→ rt)”, respectively). In the latter two conditions, the radius rt of the spatial frequency mask in Eqn. 13 decreases from 1



to 0 across denoising time steps. For low pass filtering (i.e. “LPF-(1 → rt)”), this means that all frequencies are included in
Ḡj

t
(Eqn. 14) at the noisiest time steps and only the lowest frequencies are included at the least noisy time steps.

As shown in Table S4, our method of selecting the full spectrum of spatial frequencies for attention at noisier time steps
and high spatial frequencies at less noisy time steps (i.e. “HPF-rt”) provides the best overall performance, particularly for
FID and overlapping PSNR. Similar to our ablation of the weight parameter in Eqn. 8 (Table S2), we observe relatively less
variation across conditions for the CLIP Score and Intra-LPIPS metrics.

Table S4. Comparison of time-dependent low or high pass filters in the panoramic experiment.

Method FID ↑ CLIP Score ↓ PSNR ↓ Ratio ↓ Intra-LPIPS ↑
No filter 25.89 24.85 23.31 0.626 0.747

LPF-(1→ rt) 29.71 24.78 22.66 0.609 0.768
LPF-rt 23.81 24.75 24.12 0.648 0.740

HPF-(1→ rt) 23.57 24.57 24.00 0.645 0.772
HPF-rt (Eqn. 13) 22.36 24.68 24.67 0.662 0.755

Note: The low pass filter (LPF) is defined as 1 → Mrt
F and, e.g., “HPF-(1 → rt)” implies

M(1→rt)
F .

D. Additional Qualitative Examples
In this section, we provide further qualitative examples of our method in comparison to baselines in the depth-to-image

and panoramic image generation experiments.



Figure S2. Depth-to-image generation using the prompt “a desk with a chair and a filing cabinet.”



Figure S3. Depth-to-image generation using the prompt “a whiteboard on a wall in an office.”



Figure S4. Panoramic image generation using the prompt “a kitchen with a large black vase on the counter and a marble counter top next
to a sink.”



Figure S5. Panoramic image generation using the prompt “a living room filled with furniture and a piano.”



Figure S6. Panoramic image generation using the prompt “a white building with a door and some plants in front of a white house with a
large glass door.”
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