
VortSDF: 3D Modeling with Centroidal Voronoi Tesselation on Signed Distance
Field

Supplemental Material

1. Overview
In this supplementary material we provide:

• Details on the ray marching algorithm in a tetrahedral
mesh.

• An additional evaluation of the different methods with
the PSNR, which reflects quality of the appearance
model generated by each method.

• Qualitative visualizations of the results in the associ-
ated video.

2. Ray marching in the tetrahedral mesh
Computing the intersections of a ray, from a camera cen-

ter through a pixel, with a tetrahedral mesh consists first in
finding the entry point and then iteratively identifying the
next neighboring tetrahedron to visit in order to find the next
intersection point. Finding the entry point can be a bottle-
neck if all the outside faces of the tetrahedral mesh needed
to be tested. Instead, in our proposal we take advantage of
the tetrahedral data structure by incorporating the camera
centers into the triangulation. Identifying the entry tetrahe-
dron for a given ray simply consists in testing the tetrahedra
that contain the ray camera center. The algorithm for ray
marching is reported in pseudo code in the algorithms 1-4.

Algorithm 1 Ray marching algorithm

INPUT A 3D ray (o, rayv) with direction rayv and start
point the camera ido at location o.

A. Build projection base for the ray (Alg. 2).

B. Identify entry tetrahedon (Alg. 3).

C. Walk though the tetrahedral mesh (Alg. 4).

OUTPUT A set of segments that intersect the tetrahedral
mesh.

Algorithm 2 A. Build projection base for the ray

INPUT A 3D ray (o, rayv) with direction rayv and start
point the camera ido at location o.

kmin ← argmini(|rayv[i]|)
kmax ← argmaxi(|rayv[i]|)
u[kmin]← 0

u[(kmin + 1)%3]← rayv[(kmin+2)%3]
rayv[kmax]

u[(kmin + 2)%3]← −rayv [(kmin+1)%3]
rayv [kmax]

t← rayv ∧ u
kmin ← argmini(|t[i]|)
kmax ← argmaxi(|t[i]|)
v[0]← t[0]

t[3−kmin−kmax]

v[1]← t[1]
t[3−kmin−kmax]

v[2]← t[2]
t[3−kmin−kmax]

OUTPUT Projection vectors u and v.

2.1. Algorithm A

Algorithm 2 builds a local coordinate system centered at
the camera location and oriented in the direction of the nor-
mal vector. Vectors u and v in alg. 2 are the two orthogonal
vectors orthogonal to the ray direction rayv . They are used
to project the summits of the tetrahedra onto the 2D plane
perpendicular to the ray and centered on the camera center.

2.2. Algorithm B

Algorithm 3 Identifies the first tetrahedron that is inter-
sected by the ray by testing all tetrahedra that contain the
camera center as one of its summits are tested. Each time
we test if the face opposite to the camera center (which is
the start point) intersects the ray. If such a case is found then
the tetrahedron is the first tetrahedron to start ray marching.

2.3. Algorithm C

Algorithm 4 walks through the tetrahedral mesh. At each
iteration, the summits of the current tetrahedron are pro-

1

Algorithm 3 B. Identify entry tetrahedon

INPUT A 3D ray (o, rayv) with direction rayv and start
point the camera ido at location o. Projection vectors u
and v.

for tet in adj[ido] do
▷ adj[ido] is the list of tetrahedra that contain vertex o.
id[0..3]← four summits ids of tet
Organise summits ids so that id[3] == ido
for j in [0..2] do

vcurr ← s[id[j]]− o
▷ s is the list of 3D vertices of the tetrahedral mesh
p[j]← [u · vcurr,v · vcurr]

end for
if Origin in (p[0], p[1], p[2]) then

Tcurr ← tet
break

end if
end for

OUTPUT The id of the first tetrahedron intersected by
the ray.

jected into the 2D plane constructed in algorithm 2 and the
exit face is identified as the one that contains the origin in
the 2D projected plane. Note that the entry face is not con-
sidered. Once the next tetrahedron is identified indices of
the summits are re-organized using the XOR operator to
ensure that always the firs three summits correspond to the
entry face and the fourth summit is the summit opposite to
the entry face. This greatly simplifies computations.

Algorithm 4 C. Walk though the tetrahedral mesh

INPUT A 3D ray (o, rayv) with direction rayv and start
point the camera ido at location o. Projection vectors
u and v. Current tetrahedron Tcurr with summits ids
TetID.

INPUT id[0], id[1] and id[2] are indices of entry face in
the previously visited tetrahedron.

INPUT ide is id of exit face in previously visited tetrahe-
dron (i.e. opposite summit id[ide] is not in current tetra-
hedron).

1. id[ide]← id[3]
▷ Now id[0], id[1] and id[2] are indices of entry face in

the current tetrahedron.
2. id[3]← id[0]⊕ id[1]⊕ id[2]⊕ TetID[3]

▷ ⊕ is the XOR operator
3. vn ← v[id[3]]− o
4. p[3]← (vn · u, vn · v)
5. ide ← GetExitFace(p[0], p[1], p[2], p[3])
6. Tcurr ← GetNextTet(Tcurr, ide, id[ide])

OUTPUT The id Tcurr of the next tetrahedron to visit.
The Id ide of the exit face in the visited tetrahedron. In-
dices id[0], id[1] and id[2] of the entry face in the current
tetrahedron.

3. Additional experiments
To evaluate the quality of the rendered images we com-

pute the average PSNR between masked rendered images
and masked input images. Note that larger values are then
better.

PSNR = 20 log(
Nv

∥I − Ĩ∥2
), (1)

where Nv is the number of valid pixels as defined by the
mask image.

Table 1 shows results of our method, NeuS2 and VOX-
URF on a subset of the 4D Human dataset [1]. From
these results we can see that our proposed method is also
extremely efficient at generating high quality appearance
models. Our proposed method (VortSDF) obtained a bet-
ter PSNR than both NeuS2 and VOXURF on all data except
f-sho-hx.

Comparison vs. TetraNerF version To further demon-
strate the advantage of our proposed densification approach
we compare our method with a straightforward extension
of TetraNERF [2] with using SDF field. Concretely, we ap-
plied our SDF optimization algorithm but with using a fixed

Table 1. Average photometric accuracy PSNR (higher is better) obtained with our method, NeuS 2 and Voxurf, for each of the 8 test
scenes.

Method f-cos-hx f-jea-hx f-opt1-hx f-opt2-hx f-opt3-hx f-sho-hx m-jea-hx m-opt-hx avg
NeuS2 27.6 28.4 31.9 33.2 30.3 31.6 29.7 25.8 29.76

VOXURF 28.38 29.32 39.26 37.34 32.82 36.73 34.45 37.57 33.23
VortSDF (our) 28.80 29.90 39.64 37.48 32.95 36.46 34.71 37.86 34.72

Fixed tetrahedral mesh Reconstructed 3D geometryPoint cloud from COLMAP VortSDF (our method)

Figure 1. Comparative results we obtained with our method and with using a fixed tetrahedral mesh defined by the dense output of
COLMAP.

tetrahedral discretization that is given by COLMAP point
cloud. Figure 1 shows that without carefully discretizing
the 3D space around the surface a detailed 3D geometry
cannot be reconstructed. Only appearance can be modeled.

References
[1] Matthieu Armando, Laurence Boissieux, Edmond Boyer,

Jean-Sebastien Franco, Martin Humenberger, Christophe
Legras, Vincent Leroy, Mathieu Marsot, Julien Pansiot, Sergi
Pujades, Rim Rekik, Gregory Rogez, Anilkumar Swamy, and
Stefanie Wuhrer. 4dhumanoutfit: a multi-subject 4d dataset
of human motion sequences in varying outfits exhibiting large
displacements. Computer Vision and Image Understanding. 2

[2] Jonas Kulhanek and Torsten Sattler. Tetra-nerf: Represent-
ing neural radiance fields using tetrahedra. Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), 2023. 2

