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A. Implementation Details

A.1. Generating Coarse Geometry

In this paper, we presented our method for generat-
ing building massing using random Constructive Solid
Geometry (CSG) objects. Here, we provide additional
details on the process of aggregating cuboids and the
constraints applied based on the initial cuboid and the
specific building type.

A.1.1 Determining the Building Type

We define three distinct building types, enabling users
to specify the desired type for generation. If no building
type is specified, the system will randomly select one.
When a specific building type is chosen, the correspond-
ing keyword (e.g., “low-rise building”) is appended to
the user-input prompt to guide the diffusion model.

A.1.2 Creating the Initial Cuboid

To define the initial cuboid, we start by randomly
selecting its base dimensions, adjustable based on the
desired cuboid size. Next, we determine the height range
based on the selected building type, using a height-to-
width ratio, where the width corresponds to the base
dimension of the building.

For low-rise buildings, the height is set to 1 to 2 times
the width of the base. For mid-rise buildings, it ranges
from 3 to 4 times the width, and for high-rise buildings,
it falls between 5 and 6 times the width. Finally, a height
is uniformly sampled from this range, completing the
initial cuboid generation.

A.1.3 Attaching Additional Cuboids

The dimensions of the attached cuboids are defined
relative to the base cuboid they are connected to, ensur-
ing that the overall 3D massing model stays within the
height limits of the designated building type.

The building massing guidelines set specific dimen-
sional constraints to ensure balanced proportions in low-
rise, mid-rise, and high-rise structures. For low-rise
buildings that expand horizontally, new cuboids must
have heights between 2 units and the smaller of 3 units
or half the base cuboid’s height, with widths and lengths
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Figure 1: Shape and Texture Generation Results. The
first and third columns show different CSG results, while
the second and fourth display their textured versions.
The bottom row presents user-input shapes and their
generated outputs.

ranging from 2 units up to twice the base dimensions.
High-rise buildings focus on vertical growth, requiring
new cuboids to have widths and lengths between 2 units
and the smaller of 3 units or half the base dimensions,
and heights from 2 units up to the full height of the
base cuboid. Mid-rise buildings adopt dimensions that
fall between these two extremes, maintaining a balanced
massing model across all building types.

After generating an additional cuboid, it is attached
to the existing structure. If the model already includes
multiple cuboids, a random one is selected as the attach-
ment point. Users can control the number of cuboids
to be created and added, allowing them to customize
the building’s massing model according to their require-
ments.

To ensure contact between the new cuboid and the
target, we randomly select a side of the target cuboid
and compute a position vector to align the new cuboid
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“A photorealistic modern wooden house, designed in an industrial style, set on grassland.”

Figure 2: Texture Synthesis Comparison. Our method
(right) generates diverse design variations from the same
base geometry (Shape 1) as depicted in the bottom left
of Fig. 1, using identical text prompts while preserving
stylistic consistency. In contrast, existing approaches [2,
5] (left) yield repetitive, low-quality results, frequently
blending backgrounds into facades or rendering portions
of the geometry invisible by merging with elements like
the sky and trees. Asps =~ 0 for these techniques implies
that the initial geometry is preserved.

precisely. For example, when placing a cuboid on top
of another, the bottom of the new cuboid aligns with
the top of the target. To introduce variation, we add
randomness by shifting the new cuboid along the plane
of attachment, allowing for varied configurations while
maintaining proper alignment. The results, along with
their textures, are illustrated in Fig. 1. Users also have
the option to import custom meshes, as demonstrated in
the bottom row of Fig. 1.

A.2. Synthesizing Textures

In this section, we describe the detailed methodologies
that enhance the texture quality and consistency of our
3D massing models. These techniques, integrated into
our workflow, are essential for achieving high-quality
results and demonstrate the comprehensive approach we
employ in our 3D synthesis process.

A.2.1 Auto-adjusting FOV

To handle the varying dimensions of our 3D massing
models, we employ an automatic adjustment mechanism
for the camera’s Field of View (FOV). This mechanism
ensures the complete visibility of the model within the
scene by dynamically adjusting the FOV parameters. We
continuously monitor the image boundaries and expand
the FOV until all the pixels at the edges align with the
background color, thereby guaranteeing the entire model
is fully captured within the rendered image.

A.2.2 Coloring the Mesh

We extract the dominant color from the initial Con-
trolNet [11] output and apply it to the 3D model to
ensure consistent texture tones during inpainting. Refer
to Sec. B.2 for additional information.

A.2.3 Inpainting with Different Seeds

Our approach provides extensive design flexibility,
allowing for variations even with the same shape and
prompt, as demonstrated in Fig. 2. Diverse textures
can be applied to the same geometric model to create
stylistic variation (Fig. 9). Moreover, beginning with
an initial render, our methods can generate multiple fa-
cade designs for the same building by employing differ-
ent random seeds during the facade-by-facade inpainting
process (Fig. 10). This capability allows users to easily
explore a wide range of design possibilities.

A.2.4 Inpainting Check and Re-inpaint

We ensure accurate 2D-to-3D texture mapping by
checking contour alignment and white pixel count; if
misalignment or excess white pixels are found, inpaint-
ing is repeated. Details are provided in Sec. B.S5.

A.2.5 Inpainting the Background

The background for our model is derived from a static
image generated by the initial ControlNet output. We
isolate the building area and use “dilation” as a key-
word to inpaint a complete background. This inpainted
background is then applied to all rotated views of our
3D model, ensuring visual coherence across all perspec-
tives.

A.3. User-defined Hyperparameters

In this project, we utilized several key user-defined
hyperparameters to let users customize and optimize the
architectural design generation process. Below is a de-
tailed description of these parameters and their signifi-
cance:
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“A stand-alone house, crafted with high-tech architecture and composite materials,
features openings. It is depicted in a photorealistic style from a side view at a street corner,
bathed in the glow of the northern light””

(b) User-input Shape

Figure 3: Shape-guided Synthesis Comparison. We apply open-vocabulary recognition to automatically detect
specific elements using keywords such as “windows” in examples (a) and (b). This approach allows us to precisely edit
details, such as pushing windows inward where needed, compared to the global edits seen in previous work (top and
bottom rows in (a) and (b)) [2, 5].

User-defined Prompt: Users can input a text
prompt to define the architectural design they wish
to generate, enabling a customizable and user-
centric process.

Building Type Specification: Users can input nu-
merical values to indicate their preference for an
auto-generated building and specify the type of
building (low-rise, mid-rise, or high-rise). This
structured approach allows for the generation of
various building typologies, ensuring that the re-
sulting designs align with the user’s intended use
cases.

Open-vocabulary Object Detection Keywords &
Threshold: Keywords allow users to specify ele-
ments they wish to adjust on the building facade.
While “windows” is the default keyword, it can
be changed to other architectural elements such as
“doors” or “balcony,” or a combination of these
keywords, as needed. This flexibility is essential
for adapting specific design features and enhanc-
ing the realism and functionality of the generated
buildings (Fig. 3).

The optimal threshold varies depending on the tex-
ture characteristics of each building, requiring ad-
justments to achieve the best results in geometry
modification.

¢ Image Dimensions: Users can define the width and
height of the rendered image, allowing control over
the resolution and aspect ratio of the output. We
default to 512 x 512, as this is the most commonly
accepted dimension for diffusion models.

 Starting Angle: Users can define the initial view-
ing angle of the model as the primary render view of
the design. For example, setting the starting angle
to 45 degrees establishes this view as the reference
point for subsequent 3D rotation and inpainting.
This primary render view is ensured to be clear and
well-defined, as the 3D texture mapping for this
view is directly derived from the initial 2D image
generated by the diffusion model.

* ControlNet: We employed the official Control-
Net [11] with SD1.5 model to control stable diffu-
sion [7] using Midas depth estimation [!], which
processes the full 512 x 512 depth map.

B. Ablation Study

We conduct an ablation study to validate the key de-
sign choices within our 3D synthesis framework, sys-
tematically comparing the results of the complete model
against those without specific components.
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Figure 4: Input Multi-facade View. (a) In these examples, the inpainting model learns from the initial one-facade
view but typically generates solid facades lacking details. This underscores the importance of a more informative initial
view for realistic, interesting, and style-consistent results. (b) The input image shows two facades of the 3D coarse
model from an angled perspective. This view, used as input for the ControlNet [! 1], provides a more comprehensive

design by revealing additional lighting, textures, and window elements on the adjacent facade.

B.1. Two-facade View

We select an angle of the 3D coarse model that promi-
nently displays two facades and render an image from
this perspective. This rendered image is then used as
input for the ControlNet model to generate the initial
view. By capturing multiple facades, the ControlNet
output provides a more comprehensive building design
compared to single-view generation. For instance, as il-
lustrated in Fig. 4 (b), the angled view reveals additional
lighting, texture, and window elements on the adjacent
facade that are absent in the initial single-facade view.
While the inpainting model can learn from the initial
one-facade view to produce similar textures, as shown
in Fig. 4 (a), it typically generates images with solid fa-
cades lacking these details. Consequently, the richer
informational content from the initial view enhances
the inpainting model’s ability to generate more realis-
tic, design-wise interesting, and style-consistent results.

B.2. Mesh Color

We observed that the inpainting model adapts to the
masked region’s color distribution. By extracting the
dominant color from the initial building view produced
by ControlNet and applying it to the 3D coarse model at
the start, we ensure consistent tones during the inpainting
process, resulting in a harmonious final texture (Fig. 5
middle).

Our experiments reveal that the inpainting model
learns not only from the visible unmasked areas but also

from the regions underneath the mask. A significant por-
tion of the generated facades exhibited noticeable color
influences from the underlying mesh color render (Fig. 5
top). This issue was more pronounced with brighter col-
ors, increasing the likelihood of color influence. When
the coarse model’s color diverges significantly from the
building’s dominant tone, the resulting facades appear
unnatural and display inconsistent textures. This un-
derscores the importance of ensuring color consistency
between the coarse model and the target building texture
to achieve realistic and cohesive outputs.

B.3. 2 x 2 Visual Prompt

With our unique 2 X 2 visual prompt as input, the
inpainting model learns and applies textures to the coarse
3D model, ensuring clean, stylistically consistent, and
3D-aware results.

We observe that inpainting a building facade using
a single image prompt produces consistent textures but
lacks sufficient window and door openings compared to
the other sides of the building (Fig. 5 bottom). The con-
sistent texture and color are achieved due to the dominant
mesh color applied beneath the masked region. How-
ever, the limited in-context information provided to the
inpainting model results in fewer openings and a less
visually interesting facade design.

To enable the inpainting model to perform in-context
learning for better results, we propose using a 2 X 2
visual prompt as input. Our method integrates the initial
output from ControlNet [1 1] and the front views of two
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“A stand-alone house, crafted with high-tech architecture and composite materials, features openings. It is depicted in a photorealistic style from a side
view at a street corner, bathed in the glow of the northern light.”

Figure 5: Mesh Color, 2 x 2 Visual Prompt, and Single Image Prompt Comparison. Top Row: Our experiments
show that the inpainting model learns from both visible unmasked areas and regions beneath the mask. Significant color
divergence between the coarse model and the building’s dominant tone leads to unnatural and inconsistent textures.
Top & Middle: We use a 2 x 2 visual prompt to enable the inpainting model to perform in-context learning. Our
method combines the initial ControlNet [ | | ] output with two adjacent facade views and an untextured view into a 2 X 2
layout. Middle Row: Our method ensures clean, style-consistent, and 3D-aware results by using a 2 X 2 visual prompt
together with the assigned mesh color. Bottom Row: Inpainting a facade using a single image prompt often produces
insufficient windows and doors because of the lack of contextual information.
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Figure 6: Multi-facade Inpainting. We conducted an experiment where multiple facades were inpainted simultane-
ously. In this setup, the model was rotated 180 degrees to inpaint the back view of the building. Most results exhibited
a different texture style compared to the main building views and lacked sufficient window and door openings on the

facades.
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Figure 7: Inpainting Check and Re-inpaint. We com-

pare boundaries of inpainted and unpainted models, re-
peating until alignment and inpainting are complete.

facades along with the untextured view into a 2 X2 visual
prompt layout. As demonstrated in Fig. 5, the middle
row shows inpainted facades that achieve both consistent
texture and sufficient openings, resulting in an improved
design.

B.4. Facade-by-facade Inpainting

We introduce a novel facade-by-facade approach for
generating realistic building textures using a 2 X 2 visual
prompt. Example results are displayed in Fig. 5 (middle).

As shown in Fig. 6, inpainting two neighboring fa-
cades simultaneously may result in inconsistently styled
facades. This occurs because the inpainting model learns
from the adjacent unmasked areas. Our facade-by-
facade approach addresses this issue effectively, allow-
ing the inpainting model to learn from the neighboring
pixels of the closed-adjacent facade, resulting in more
cohesive and consistent outcomes.

To generate realistic building textures, we need to
further constrain the generation process. This facade-
by-facade method constrains the model to operate within
the specific geometric context, ensuring that textures are
applied accurately. This approach also mitigates the
multi-face Janus problem.

B.5. Inpainting Check and Re-inpaint

To ensure accurate texture mapping from 2D to 3D,
we first verify that the filled-in image completely covers
the masked area. We compare a render of the object’s
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“A minimalist modern house with large glass windows and a concrete structure,
elevated on stilts in a snowy forest. Bare trees covered in light snow create a serene
winter scene.”

(IT) ControlNet Miscontrol

“A stand-alone house, crafted with high-tech architecture and composite materials,
features openings. It is depicted in a photorealistic style from a side view at a street
corner, bathed in the glow of the northern light.”

(III) Inpainting Misinpaint

“A futuristic building with a prominent large glass window, set in a desert landscape
surrounded by a variety of cacti and desert flora, bathed in sunset”

(IV) SAM Missegment

“A modern house with large floor-to-ceiling glass windows, brick walls, and a
flat roof. The building features an open-plan interior with warm lighting, visible
from the outside. It is set in a lush, green lawn, with a clear evening sky in the
background”

Figure 8: Examples of Limitations and Challenges.
While our method performs well, challenges remain: (I)
Vertex color mapping can distort textures in angled pro-
jections, especially in horizontally extensive buildings.
(II) ControlNet [ | 1] may miss 3D geometry details. (III)
The inpainting model [7] can generate less realistic tex-
tures. (IV) Open-vocabulary object detection [6] and
Segment Anything Model [3] need hyperparameter tun-
ing to reduce misidentification.

boundary with a render of the original model’s edges.
Additionally, we count the white pixels within the bound-
ary. If significant differences are detected or if there are
too many white pixels, we repeat the process to ensure
full coverage, as shown in Fig. 7.

C. Limitations and Challenges

Here we identified challenges that offer opportunities
for future improvements.

First, while vertex color-based texture mapping is effi-
cient, it may cause distortions in angled projections, es-
pecially in long, horizontally extended buildings (Fig. 8
@).

Second, the quality of our results is influenced by the
ControlNet [ 1] and inpainting model, with occasional
issues of the ControlNet model losing control and ignor-
ing 3D geometry (Fig. 8 (II)). There are also instances
where the inpainting model produces less convincing
textures (Fig. 8 (III)).

Last, Open-vocabulary Object Detection [0] and the
Segment Anything Model [3] require hyperparameter
adjustments to improve detection accuracy and minimize
misidentification of elements (Fig. 8 (IV)), which can be
affected by variations in lighting and texture.

D. Additional Comparisons

Finally, we provide additional qualitative comparisons
with text-guided synthesis models, including Prolific-
dreamer [10], MVDream [8], Dreamfusion-Hifa [12],
Magic3D [4], and TextMesh [9], as shown in Figs. 11
to 19. These examples are selected to demonstrate the
capabilities of our approach under various text prompts
and to highlight the improvements achieved over existing
techniques.

In conclusion, our method delivers higher-quality 3D
synthesis for architectural design, resulting in more re-
alistic and visually compelling outcomes.
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“A photorealistic modern wooden house, designed in an industrial style, set on “A stand-alone house, crafted with high-tech architecture and composite materials,
grassland.” features openings. It is depicted in a photorealistic style from a side view at a street
corner, bathed in the glow of the northern light.”
(a) Shape 1 (b) Shape 2

Figure 9: Style Variation. Our method can generate diverse facade textures and styles for buildings with the same
shape. By leveraging the inpainting model and facade-by-facade approach, we produce a wide range of stylistic
variations that maintain structural consistency.
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“A stand-alone house, crafted with high-tech architecture and composite materials, “A concrete structure with mechanistic features and large large large windows,
features openings. It is depicted in a photorealistic style from a side view at a street depicted in a true-to-life style. Nestled in a dense forest and bathed in natural light,
corner, bathed in the glow of the northern light.” the windows enhance its connection with the wilderness.”
(a) Shape 3 (b) Shape 4

Figure 10: Facade Variation. Here, we demonstrate that our method can generate diverse designs for each facade of
the same building using a facade-by-facade approach. These designs maintain a consistent style while offering unique
variations. This capability is particularly valuable in the early design stages, as it enables the exploration of multiple
architectural options to support various design concepts and goals.

10



Others Ours

View 1 View 2 View 3 View 1 View 2 View 3
[ FE
g R
3]
=
<
&
o
]
E
S
-
o
<
= o
2 E
o Q
& o
&
=
=]
o
k7]
g
=
<
L
-
[a)

“A stand-alone house, crafted with high-tech architecture and composite materials, features openings. It is depicted in a photorealistic style from a side
view at a street corner, bathed in the glow of the northern light”

Figure 11: Additional Comparisons between Ours and the Baselines: Prolificdreamer [10], TextMesh [9], and
Dreamfusion-Hifa [12].
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“A photorealistic modern wooden house, designed in an industrial style, set on grassland.”

Figure 12: Additional Comparisons between Ours and the Baselines: Prolificdreamer [10], MVDream [S], and
TextMesh [9].
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“A futuristic building with a prominent large glass window, set in a desert landscape surrounded by a variety of cacti and desert flora, bathed in
sunset.”

Figure 13: Additional Comparisons between Ours and the Baselines: Prolificdreamer [10].
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“A futuristic building with a prominent large glass window, set in a desert landscape surrounded by a variety of cacti and desert flora, bathed in
sunset.”

Figure 14: Additional Comparisons between Ours and the Baselines: TextMesh [9] & Magic3D [4].

13



Others Ours

View 1 View 2 View 3 View 1 View 2 View 3

Magic3D
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“A concrete structure with mechanistic features and large large large windows, depicted in a true-to-life style. Nestled in a dense forest and
bathed in natural light, the windows enhance its connection with the wilderness.”

Figure 15: Additional Comparisons between Ours and the Baselines: Magic3D [4].
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“A concrete structure with mechanistic features and large large large windows, depicted in a true-to-life style. Nestled in a dense forest and
bathed in natural light, the windows enhance its connection with the wilderness.”

Figure 16: Additional Comparisons Between Ours and the Baselines: MVDream [8] & Dreamfusion-Hifa [12].
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“A stand-alone building, crafted with organic architecture and ceramic detailing, features large windows. It is depicted in a photorealistic style
from a two-point perspective, nestled in an autumn setting and bathed in direct sunlight.”

Figure 17: Additional Comparisons between Ours and the Baselines: MVDream [§].
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“A minimalist modern house with large glass windows and a concrete structure, elevated on stilts in a snowy forest. Bare trees covered in light
snow create a serene winter scene.”

Figure 18: Additional Comparisons between Ours and the Baselines: Magic3D [4].
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“A house showcasing vintage aesthetics is captured in a lifelike, two-point perspective with dynamic glass and moody lighting, nestled within a
wetland setting”

Figure 19: Additional Comparisons between Ours and the Baselines: Dreamfusion-Hifa [12].
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